高应变
简介
用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判断的检测方法。
高应变检测的基本原理
高应变榆测的基本原理就是往桩顶滞轴向施加一个冲击力,使桩产生足够的贯入度,实测由此产生的桩身质点应力和加速度的响应,通过波动理论分析,判定单桩竖向抗承载力及桩身完整性的榆测方法。
用重锤冲击桩顶,使桩~土之间产生足够的相对位移,以充分激发桩周土阻力和桩端支承力.从桩身运动方向来说,有产生向下运动和向上运动之分。
习惯把桩身受压(小沦是内力、应力还是应变)看作正的,把桩身受拉看作是负的;把向下运动(不论是位移、速度还是加速度)看作正的,而把向上的运动看作负的。
南于应力波在其沿着桩身的传播过程中将产生十分复杂的透射和反射,因此,有必要把桩身内运动的各种应力波划分为上行波和下行波。
由于下行波的行进方向和规定的正向运动方向一致,在下行波的作用下正的作用力(即压力)将产生正向的运动,而负的作用力(拉力)则产生负向的运动。
上行波则正好相反,上行的压力波(其力的符号为正)将使桩产生负向的运动,而上行波的拉力(力的符号为负)则产生正向的运动。
由于锤击所产生的压力波向下传播,在有桩侧摩阻力或桩载而突然增大处会产生一个压力同波,这一压力回到桩顶时,将使桩顶处的力增加,速度减少。
同时,下行的压力波在桩载面突然减小处或有负摩阻力处,
将产生一个拉力回波。
拉力波返回桩顶时,将使桩顶处的力值减小,速度增加。
掌握这一基本概念就可以在实测的力波曲线和速度曲线中根据两者变化关系来判断桩身的各种情况。
●测试系统示意图
●应用要点
1 检测桩数
由于工程桩是不允许不合格桩存在的,因此在进行检测时,不应简单地采用随机抽样的方式,而应根据打桩记录,经过综合分析,抽检那些估计质量可能较差的桩。
以提高检测结果的可靠度,减少工程隐患。
基桩的高应变动力检测有两种情况:一种是根据《建筑桩基技术规范》中的有关规定进行的例行检测,其检测桩数不宜少于总桩数的5%,并不得少于5根;另一种是发现桩基工程有质量问题,必须对桩基施工质量、承载能力作出总体评价时,应由有关方面协商,适当增加抽检桩数,一般不应少于总桩数的10%。
并不应少于10根,必要时还应进行低应变动力检测普查基桩桩身结构的完整性。
2 检测截面的选择
传感器直接测到的信号是检测面上的应变和加速度的信号,要根据其他参数设定值计算后才能得到力和速度信号。
检测截面选择不当,如传感器过分靠近桩顶或在变截面附近,实测的应变不具代表性;传感器安装处局部砼质量差,不利于传感器的固定,在锤击力作用下还可能产生严重的非弹性变形,同时截面的阻抗也估算不准等,都会影响承载力的计算结果。
3 锤击设备的选取
高应变动力检测基桩时,为了使桩土间产生一定的相对位移,需要在桩上作用有较大的能量,因此必须用重锤锤击桩顶。
对于预制桩(包括管桩),可以利用打桩机作为锤击装置进行试验;对于灌注桩,则需要选择专门的自由落锤锤击设备,包括锤体、导向架脱钩器等,调整锤重和锤的落距是关系到能否采集到合格有用信号(也就是试验成败)的关键。
锤重选取可按“规程”要求,即锤重应大于预估桩极限承载力的l%-1.5%。
落距大小是影响力峰值和桩顶速度的重要因素,落距过小,则能量不足;而落距过大,力峰值过大,易击碎桩顶。
一般的落距控制在1.0~2.Om之间,最大落距≤2.5m,最好是重锤低击,锤重和锤落距的选取要使桩的锤击贯入度≥2.5mm,但不能超过10mm。
贯入度过小,土的强度发挥不充分,太大则不满足波动理论,实测波形失真。
4 检测的工作面要求
(1)为确保试验时锤击力的正常传递和提高工作效率,应先凿掉桩顶部的破碎层和软弱混凝土,对灌注桩、桩头严重破损的混凝士.预制桩和桩头已出现屈服变形的钢桩,试验前应对桩头进行修复或加固处理。
(2)桩头顶面应保持水平、平整,桩头中轴线与桩身中轴线应重合.桩头截面积应与原桩身截面积相同,桩头主筋应全部直通至桩顶混凝土保护层之下,各主筋应在同一高度上。
(3)距桩顶上1倍桩径范围内,宜用3~5mm钢板围裹或距桩顶1.5倍桩径范围内设箍筋,间距不宜大于150ram。
桩顶应设置钢筋网片2~3层,间距60—100mm,桩头混凝土强度等级宜比桩身混凝土提高1~2级,且不得低于C30。
(4)桩头应高出桩周土2~3倍桩径,桩周1.2m以内应平整夯实。
(5)从成桩到开始试验的休止时间:在桩身强度达到设计要求的前提下,一般对于砂类土不应少于7d;粉土不应少于lOd;非饱和黏性土不应少于15d;饱和黏性土不应少于25d,预制桩承载力的时间效应可通过复打试验确定。
对于泥浆护壁灌注桩,宜适当延长休止时间。
5 桩上体系的破坏模式
高应变动力检测所判定的单桩竖向极限承载力是指岩土对桩的
静土阻力,是在桩身材料强度满足要求的前提下得到的。
大多数情况是岩土对桩的阻力被克服而使承载力达到极限;但也有其他情况,如桩身的压屈,桩径小或桩身砼质量差而导致桩身强度先期破坏,由
于高应变检测中动力荷载的持续时间短,在静载荷试验中可能先期出现的破坏模式在高应变检测中可能不出现,因此在检测时要注意桩身阻抗的变化,不能单纯以某一次动荷载作用下获得的阻力推断承载力,而要观察桩身缺陷在多次动力冲击下的变化和发展。
若桩身存在先期破坏的可能,就不能以高应变获得的极限阻力作为单桩极限承载力。
6 检测数据分析
分析方法一般采用Case法和实测曲线拟合法。
采用实测曲线拟合法分析桩身扩径、桩身截面渐变或多变的情况,应注意合理选择土参数。
高应变法锤击的荷载上升时间一般不小于2m/s,因此对桩身浅部缺陷位置的判定存在盲区,也无法根据裂缝宽度8 W来判定缺陷程度。
只能根据力和速度曲线的比例失调程度来估计浅部缺陷程度;不能定量给出缺陷的具体部位,尤其是锤击力波上升非常缓慢时,还受土阻力的影响。
对浅部缺陷桩,宜用低应变法检测并进行缺陷定位。