当前位置:文档之家› 管道清灰机器人设计

管道清灰机器人设计

管道清灰机器人的设计摘要本设计内容为管道清灰机器人,主要对管道清灰机器人结构系统的设计,机器人的末端操作器即手指是可替换夹具,操作臂有四个自由度,可实现在工作空间范围内的物体的转移,旋转角可达360度,手爪一次可载荷5kg。

操作臂的动力源为舵机,总共有5个舵机,它们分别控制腰部旋转,大臂、小臂、手腕的摆动,以及手爪张合,本文设计的管道清灰机器人可用于小工作空间内完成对小质量物体的转移工作达到管道清灰的目的,同时也可以做为搬运机器人使用。

关键词:四自由度;操作臂;舵机In pipe clearing ash robot designABSTRACTThis design content for pipeline cleaning robot, mainly of in pipe clearing ash robot system design, the robot end-effector which fingers are replaceable fixture, manipulator with four degrees of freedom, can be realized in work space objects within the range of shift, rotation angle can reach 360 degrees, the gripper once can load 5kg.The operating arm of the power source for the steering gear, a total of 5 steering gear, which respectively control the rotating arm, waist, arm, wrist swing, and the gripper opening and closing, this design of in pipe clearing ash robot can be used in small working space to complete small mass transfer work to achieve the pipeline cleaning purposes, while at the same time can be used as a carrying robot.Key words: four degrees of freedom; manipulator; servo目录第1章概述 (4)1.1机器人概述 (4)1.2 管道机器人概述 (6)1.3 国内外管道机器人的发展 (6)1.3.1 国内管道机器人的发展 (6)1.3.2 国外管道机器人的发展 (8)1.4 机器人的发展前景 (10)第2章总体方案的制定及比较 (11)2.1 管道机器人的设计参数和技术指标 (11)2.2 总体结构的设计和比较 (11)第3章部件的设计和计算 (15)3.1 管道机器人工作量计算 (15)3.2 行走机构的设计和计算 (16)3.3 撑开机构和放大杆组的设计 (23)3.4 操作臂的设计 (24)第4章控制原理设计 (26)4.1 控制原理的分析和设计 (26)4.2 主要控制流程图 (27)第5章其它 (29)5.1 大小锥齿轮的设计和校核 (29)5.2 轴Ⅰ的设计和校核 (32)5.3 键的校核 (40)谢辞 (41)参考文献 (42)第1章概述1.1机器人概述机器人----这一词最早使用始于1920年至1930年期间在捷克作家凯勒尔*凯佩克(Karel capek)的名为"罗莎姆的万能机器人"的幻想剧中,一些小的人造的和拟人的傀儡绝对地服从其主人的命令。

这些傀儡被称为“机器人”。

该单词起源于捷克语“robota”。

意思是“强制的劳动”。

机器人的组成与人类相似。

举例说,人搬运某一物体的运动过程可用图(a)所示的方块图来说明。

首先,人听到外部的命令或用眼睛看到外部的指令,并由眼睛测量出距离。

感受到这两种信息经过感觉神经送到大脑中,大脑经过分析计算,然后通过运动神经发出指令,手臂用最好的方式伸向物体,并将物体抓住,手上的感觉神经,感觉物体已经抓牢了,把信息传给大脑。

大脑命令手抓起物体,同时指令脚移动到所要求到达的地点,最后放下物体。

一般包括以下几个部分见图(b):1.控制中枢(相当于人的大脑);2.操作装置(相当于人的手);3.行走装置(相当于人的脚);4.有感觉的机器人还必须有感觉装置以及与外界环境联系的装置(相当于人的口、耳、眼、鼻以及皮肤上的感觉神经)。

实际的机器人在不同的程度上具有两种特有的属性:对环境的通用性和自动适应性。

①通用性:具有完成各种任务以及以不同的方式完成相同的结构或机械能力。

这意味着机器人的机械结构具有可变的机械形状。

②自动适应性:是指一个机器人必须被设计成由其自己去完成任务,尽管难以预知,但却可以有限的知道在完成任务期间环境的变化,通过改变路径、姿态等来处理所面对的问题,最终完成任务。

为了对机器人进行分类,必须能够定义和区分不同的类型,因此根据不同的定义就有不同的分类方法。

现在使用的有很多种。

以下介绍日本工业机器人协会(JIRA)的分类方法:第一类:手工操作装置:一种由操作人员操作的具有若干个自由度(DOF)的装置;第二类:固定程序的机器人:依照预定的不变的方法按部就班执行任务的操作装置,对任务的执行顺序很难进行修改;第三类:可变程序的机器人:与第二类是同一种类型的操作装置,但其执行步骤可以修改;第四类:再现式机器人:操作人员通过手动方式引导或控制机器人完成任务,而机器人控制装置则记录其运动轨迹,需要时可以重新调出记录的轨迹信息,机器人就能以自动的方式完成任务;第五类:数值控制机器人:由操作人员给机器人提供运动程序,而不是用手动方式教导机器人完成指定的作业任务;第六类:智能机器人:通过对环境变化的感知,改变其运动轨迹、姿态等措施圆满的完成任务。

机器人的诞生和机器人学的建立无疑是20世纪人类科学技术的重大成就。

自60年代初机器人问世以来,作为20世纪人类最伟大发明之一的机器人技术,经历了近半个世纪的发展,已取得了长足的进步。

特别是到了20世纪90年代,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。

除了用于工业生产中从事焊接、喷漆、搬运和装配等作业的工业机器人的水平不断提高之外,各种用于非制造业的特种、智能机器人系统也有了长足的进展。

工业机器人在经历了诞生-成长-成熟期后,已成为现代先进制造业中必不可少的核心装备,当今世界上约有上百万台工业机器人正与工人朋友并肩战斗在各条战线上。

非制造业中的仿人性机器人、农业机器人、水下机器人、医疗机器人、军用机器人、娱乐机器人、服务机器人等各种用途的特种机器人也正以飞快的速度向实用化迈进。

1.2 管道机器人概述20世纪70年代以来, 石油、化工、天然气及核工业等产业迅速发展, 各种管道作为一种重要的物料输送设施, 得到了广泛应用。

由于腐蚀、重压等作用, 管道不可避免地会出现漏孔、裂纹等现象。

同时多数管道安装环境人们不能直接到达或不允许人们直接进入, 为进行质量检测和故障诊断, 采用传统的全面挖掘法、随机抽样法工程量大, 准确率低, 管道机器人就是为解决这一实际问题产生的。

它是由可沿管道内部或外部自动行走装置、携有一种或多种传感器及操作装置如:机械手、喷枪、焊枪、刷子。

管道机器人的工作空间是复杂、封闭的各种管道, 包括水平直管、各角度弯管、斜坡管、垂直管以及变径管接口等, 所以需要在操作人员的遥控操作或计算机自动控制下, 进行一系列管道作业。

管道机器人可完成的管道作业有以下几类:1.生产、安装过程中的管内外质量检测。

2.恶劣环境下管道清扫、喷涂、焊接、内部抛光等维护。

3.使用过程中焊缝情况、表面腐蚀、裂缝破损等故障诊断。

4.对埋地旧管道的修复。

5.管道内外器材运送、抢救等其它用用途。

1.3 国内外管道机器人的发展1.3.1 国内管道机器人的发展国内在管道机器人方面的研究起步较晚, 而且多数停留在实验室阶段。

哈尔滨工业大学邓宗全教授在国家“863”计划课题“X射线检测实时成像管道机器人的研制”的支持下, 开展了轮式行走方式的管道机器人研制, 实现了管内外机构同步运动作业无缆操作技术, 并研制了链式和钢带式两种新型管外旋转机构。

该系统由六大部分组成(1)移动载体(2)视觉定位(3)收放线装置(4)X射线机(5)检测控制,系统控制(6)防护系统1----能源2----控制系统3----收放线装置4----X射线控制5----驱动装置6----X射线机7----视觉定位装置8----防护罩9----管道壁上海交通大学研发了小口径管道内蠕动式移动机构。

它是模仿昆虫在地面上爬行时蠕动前进与后退的动作设计的。

其主要机构由撑脚机构、三个气缸(前气缸、中气缸、后气缸)、软轴、弹簧片、法兰盘组成。

针对微小空间、微小管道实时探测的要求,研制成电磁驱动微小型管道机器人样机。

微小管道机器人由四个电磁驱动单元组成。

其驱动机理模拟生物体的蠕动爬行。

它是通过给线圈加一系列的时序脉冲进行控制,依次使各单元动作,达到蠕动爬行的运动。

西安交通大学设计制作了蠕动式微动直线自行走机构。

这种行走机构以电致伸缩微位移器做驱动器,以电磁铁机构作为可吸附于行走表面的保持器。

广州工业大学借用仿生学原理,研制成结构独特的,像蠕虫一样的微管道机器人的运动由电磁力驱动。

机器人由前后两个电磁线圈和前后两个驱动器组成。

当分别通电时,机器人的两个驱动器相互吸合收缩。

当后电磁线圈断电时,后部突然放松,由此产生的推力将机器人前部(前驱动器)向前推进一段距离;反向运动依次类推。

1.3.2 国外管道机器人的发展国外关于燃气管道机器人的研究始于20世纪40年代, 由于70年代的微电子技术、计算机技术、自动化技术的发展, 管道检测机器人技术于90 年代初,得到了迅猛发展并接近于应用水平。

日本机器人的发展经过了60年代的摇篮期, 70年代的实用期, 到80年代进入普及提高期, 开始在各个领域内广泛推广使用机器人。

日本管道机器人众多, 东京工业大学于1993年开始研究管道机器人, 并且成功研制出Thes系列的机器人,以下介绍Thes2Ⅲ型管道机器人,如图(1)所示:其采用“电机- 蜗轮蜗杆- 驱动轮”的驱动方案, 同时每个驱动轮都有一个倾斜角度测量轮, 通过测量轮探测机器人的倾斜角度, 并反馈给电机从而保证管道机器人的驱动轮以垂直的姿态运动。

该管道机器人系统通过CCD摄像头实现信息的采集, 整个系统采用拖缆控制方式, 检测距离超过100m。

相关主题