当前位置:文档之家› 微电网潮流问题

微电网潮流问题

微电网的潮流问题
徐航宇
内容
1.微电网产生的背景及定义
2.微电网的结构和特点 3.研究现状 4.潮流问题 5.总结
微电网背景


1)大电网的弊端日益明显: 大电网过去几十年的快速发展,成为主要的电力供应渠道。 但随着社会对电力依赖的增强,电网规模的不断扩大,超大 规模电力系统的弊端也日益显现:成本高,运行难度大,难 以适应用户越来越高的安全、可靠性以及多样化的供电需求。
2)能源短缺: 进入21世纪以来,随着石油价格的日益上涨,世界范围内的 能源供应持续紧张,合理开发利用绿色能源已经成为一个重 要课题。开发利用清洁高效的可再生能源是解决未来世纪能 源问题的主要出路。


3)考虑分布式电源对电网的影响: 分布式发电具有污染少、可靠性高、能源利用效率高、安 装地点灵活等多方面优点,有效解决了大型集中电网的许 多潜在问题。所以,分布式发电被提上了日程。分布式电 源尽管优点突出,但本身存在诸多问题,例如,分布式电 源单机接入成本高、控制困难等。另外,分布式电源相对 大电网来说是一个不可控源,因此大系统往往采取限制、 隔离的方式来处置分布式电源,以期减小其对大电网的冲 击。 此外,IEEE 1547对分布式能源的入网标准做了规定:当 电力系统发生故障时,分布式电源必须马上退出运行。这 就大大限制了分布式能源效能的充分发挥。为协调大电网 与分布式电源间的矛盾,充分挖掘分布式能源为电网和用 户所带来的价值和效益,所以,学者们提出了微电网的概 念。
国外研究现状的比较



美国近年来发生了几次较大的停电事故,使美国电力工业十 分关注电能质量和供电可靠性,因此美国对微电网的研究着 重于利用微电网提高电能质量和供电可靠性。 日本本土资源匮乏,其对可再生能源的重视程度高于其他国 家,但很多新ห้องสมุดไป่ตู้源具有随机性,穿透功率极限限制了新能源 的应用,所以日本在微电网方面的研究更强调控制与电储能。 欧洲希望通过优化从电源到用户的价值链来推动和发展 DERs,以使用户、电力系统及环境受益。欧洲互联电网中 的电源大体上靠近负荷,比较容易形成多个微电网,所以欧 洲微电网的研究更多关注于多个微电网的互联问题。


该模型也反映了微电网与分布式发电得不同: (1)微电网能有效地管理分布式发电。分布式电源DG通 过电力电子接口接入微电网,分布式电源DG的控制速度 更快,短路点故障电流受到限制。从而保证电网运行的灵 活性和稳定性。(2)敏感负荷电源的双重配置,既可以 通过静态开关从公共电网取电,也可以由DG供电,保证 了敏感负荷对电力可靠性和电能质量的要求。(3)敏感 负荷通过静态开关(SS)与公共电网连接,当公共电网 发生故障时,静态开关迅速动作,微电网进入孤网运行, 保证对敏感负荷的持续电力供应。(4)微电网是一个整 体,它的控制保护复杂,传统继电保护原理不适用于微电 网,必需新的保护技术。(5)微电网并网运行模式和传 统分布式发电都与公共电网相连,但微电网PCC处静态开 关(SS)的设置使得微电网对公共电网的影响降至最低。
主要问题的总结
但是,中国微电网的发展尚处在起步阶段,在今后 微电网的研究和发展中,以下几个方面的问题需要 给予更多的关注: (1)微电网中含有多个微电源,各微电源之间的 协调控制是一个需要重点考虑的问题。(2)微电 网中引入了很多先进的电力电子设备,它们大都是 灵活可控的,如何实现对这些设备的智能控制和最 优控制也是一个很重要的问题。 (3)微电网中的 微电源,如风电、光伏发电等,大都采用全控型换 流器,这些电力电子设备的引入很可能会带来一些 谐波方面的问题。

微电网的概念


CERTS给出的微电网定义是:微电网是一种由负荷和微 型电源共同组成的系统,它可同时提供电能和热量;微电 网内部的电源主要由电力电子器件负责能量的转换,并提 供必要的控制;微电网相对于外部大电网表现为单一的受 控单元,并可同时满足用户对电能质量和供电安全等方面 的要求。 微电网从系统观点看问题,将发电机、负荷、储能装置及 控制装置等结合,形成一个单一可控的单元,同时向用户 供给电能和热能。微电网中的电源多为微电源,包括微型 燃气轮机、燃料电池、光伏电池以及超级电容、飞轮、蓄 电池等储能装置。它们接在用户侧,具有低成本、低电压、 低污染等特点。

微电网通过合适的控制策略对微电源及储能装置等 的优化控制,可以为用户提供高质量电能,而上述 装置大多通过电力电子变换器与微电网连接,因此 电力电子变换器是微电网控制的基础,潮流计算方 法必须考虑微电源变换器的稳态潮流模型。目前大 电网系统潮流计算中高压直流输电变换器模型已经 比较成熟,但对微电网中电力电子变换器的稳态潮 流模型研究较少,因微电网系统结构及运行方式的 复杂性,使得微电网中电力电子变换器的稳态潮流 模型建立比较复杂

微电网既可与大电网联网运行,也可在电网故障 或需要时与主网断开单独运行。它还具有双重角 色:对于公用电力企业,微电网可视为电力系统 可控的“细胞”,例如,这个“细胞”可以被控 制为一个简单的可调度负荷,可以在数秒内做出 响应以满足传输系统的需要;对于用户,微电网 可以作为一个可定制的电源,以满足用户多样化 的需求,例如,增强局部供电可靠性,降低馈电 损耗,支持当地电压,通过利用废热提高效率, 提供电压下陷的校正,或作为不可中断电源。 在接入问题上,微电网的入网标准只针对微电网 与大电网的公共连接点(PCC),而不针对各个具 体的微电源。微电网不仅解决了分布式电源的大 规模接入问题,充分发挥了分布式电源的各项优 势,还为用户带来了其他多方面的效益。

微电网中含有诸如风力发电、光伏发电等多种间歇 性微电源,受自然天气条件影响较大,其微电源间 歇性输出会造成系统潮流的突然变化。目前主要有 两种方法解决间歇性微电源对潮流计算的影响:一种 是利用储能系统与间歇性电源相结合,补偿间歇性 微电源的有功与无功缺额,使其输出保持稳定,此 时系统的潮流计算方法与确定性潮流计算方法一致 另一种则是考虑微电源的随机特性,采用新的潮流 算法对微电网进行考虑微电源间歇特性的潮流计算, 对微电网进行更精确的评估。
微电网的潮流计算问题

潮流计算是微电网分析与控制的基础,是微电网能量管理系统地重要组 成部分。微电网由于运动方式及微电源的多样性等特点使其潮流计算不 同于配电网。配电网内的潮流都是单向流动的,而微电网含有多个微电 源,微电网内的潮流流向不再单一;当微电网并网运行时,潮流从母线 流向负荷,微电源影响着线路潮流的方向和大小,当微电网孤岛运行时, 线路潮流的方向和大小由微电源决定。微电网的这些特点使得微电网潮 流计算更加复杂,为满足为电源分析及控制的需要,必须结合如上特点 对传统配电网络潮流算法进行改进。传统配电网潮流计算的应用前提是 系统中没有PV节点,但对微电网而言,网中各处都可能有发电单元,即 存在多个PV节点,因此,用于配电网的潮流计算方法并不能简单的推广 应用于微电网。再者,微电网中含有输出功率可能快速变动的发电单元 (如光伏发电、风力发电、潮汐发电等),故对潮流计算的实时性性有 要求,需要在线计算出功率需求量。

微电网结构

图中包括3条馈线A,B和C及1条负荷母线,网络整体呈辐 射状结构。馈线通过主分隔装置(通常是一个静态开关)与配 电系统相连,可实现孤网与并网运行模式间的平滑切换。 该开关点即PCC所在的位置,一般选择为配电变压器的原 边侧或主网与微电网的分离点。



图1展示了光伏发电、微型燃气轮机和燃料电池等微电源 形式,其中一些接在热力用户附近,为当地提供热源。微 电网中配置能量管理器和潮流控制器,前者可实现对整个 微电网的综合分析控制,而后者可实现对微电源的就地控 制。当负荷变化时,潮流控制器根据本地频率和电压信息 进行潮流调节,当地微电源相应增加或减少其功率输出以 保持功率平衡。 图1还示范了针对3类负荷的微电源供电方案。①对于连接 在馈线A上的敏感负荷,采用光伏电池供电;②对于连接在 馈线C上的可调节负荷,采用燃料电池和微型燃气轮机混 合供电;③对于连接在馈线B上的可中断负荷,没有设置专 门的微电源,而直接由配电网供电。 这样,对于敏感负荷和可调节负荷都是采用双源供电模式, 外部配电网故障时,馈线A,C上的静态开关会快速动作 使重要负荷与故障隔离且不间断向其正常供电,而对于馈 线B上的可中断负荷,系统则会根据网络功率平衡的需求, 在必要时将其切除。
相关主题