不等式块1.排序不等式(又称排序原理) 设有两个有序数组n a a a ≤≤≤ 21及.21n b b b ≤≤≤ 则n n b a b a b a +++ 2211(同序和)jn n j j b a b a b a +++≥ 2211(乱序和)1121b a b a b a n n n +++≥- (逆序和)其中n j j j ,,,21 是1,2,…,n 的任一排列.当且仅当n a a a === 21或n b b b === 21时等号(对任一排列n j j j ,,,21 )成立.2.应用排序不等式可证明“平均不等式”:设有n 个正数n a a a ,,,21 的算术平均数和几何平均数分别是n n n nn a a a G na a a A 2121=+++=和此外,还有调和平均数(在光学及电路分析中要用到nn a a a nH 11121+++=,和平方平均(在统计学及误差分析中用到)na a a Q nn 22221+++=这四个平均值有以下关系n n n n Q A G H ≤≤≤. ○* 3.应用算术平均数——几何平均数不等式,可用来证明下述重要不等式. 柯西(Cavchy )不等式:设1a 、2a 、3a ,…,n a 是任意实数,则).)(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++等号当且仅当k ka b i i (=为常数,),,2,1n i =时成立. 4.利用排序不等式还可证明下述重要不等式.切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21 ,则.21212211nb b b n a a a n b a b a b a nn n n +++⋅+++≥+++例题讲解1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++2.0,,>c b a ,求证:.)(3c b a cb a abc c b a ++≥3.:.222,,,333222222abc ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤++∈+求证4.设*21,,,N a a a n ∈ ,且各不相同,求证:.32131211223221na a a a n n ++++≤++++ .5.利用基本不等式证明.222ca bc ab c b a ++≥++6.已知,0,,1≥=+b a b a 求证:.8144≥+b a7.利用排序不等式证明n n A G ≤8.证明:对于任意正整数R ,有.)111()11(1+++<+n n n n9.n 为正整数,证明:.)1(131211]1)1[(111----<++++<-+n nn n n nn n例题答案:1. 证明:abc a c ca c b bc b a ab 6)()()(-+++++)()()()2()2()2(222222222≥-+-+-=-++-++-+=b a c a c b c b a ab b a c ac c a b bc c b a.6)()()(abc a c ca c b bc b a ab ≥+++++∴评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明ca bc ab c b a ++≥++222时,可将22b a +)(ca bc ab ++-配方为])()()[(21222a c c b b a -+-+-,亦可利用,222ab b a ≥+ca a c bc c b 2,22222≥+≥+,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于c b a ,,对称,不妨+∈---≥≥R c a c b b a c b a ,,,则,且cb b a ,, ca都大于等于1..1)()()()(3333333333232323≥⋅⋅=⋅⋅⋅⋅⋅==---------------++c a c b b a b c a c c b a b c a b a b a c c a b c b a c b a cb a ca cb b a ccbbaacbaabc c b a评述:(1)证明对称不等式时,不妨假定n 个字母的大小顺序,可方便解题. (2)本题可作如下推广:若≥=>na naai a a a n i a 2121),,,2,1(0则.)(2121na a a n na a a +++(3)本题还可用其他方法得证。
因abbab a b a ≥,同理c a a c b c c b a c a c c b c b ≥≥,,另cbacbac b a c b a ≥,4式相乘即得证.(4)设.lg lg lg ,0c b a c b a ≥≥≥≥≥则例3等价于,lg lg lg lg a b b a b b a a +≥+类似例4可证.lg lg lg lg lg lg lg lg lg a c b b c a a c c b b a c c b b a a ++≥++≥++事实上,一般地有排序不等式(排序原理):设有两个有序数组n n b b b a a a ≤≤≤≤≤≤ 2121,,则n n b a b a b a +++ 2211(顺序和)n j n j j b a b a b a +++≥ 2121(乱序和)1111b a b a b a n n n +++≥- (逆序和)其中n j j j n ,,2,1,,,21 是的任一排列.当且仅当n a a a === 21或n b b b === 21时等号成立.排序不等式应用较为广泛(其证明略),它的应用技巧是将不等式两边转化为两个有序数组的积的形式.如c c b b a a a c c b b a c b a R c b a ⋅+⋅+⋅⇔++≥++∈+222222333,,,时cc b b a a a c c b b a c b a a c c b b a a c c b b a 111111;222222222222⋅+⋅+⋅≥⋅+⋅+⋅⇔++≥++⋅+⋅+⋅≥.3.思路分析:中间式子中每项均为两个式子的和,将它们拆开,再用排序不等式证明.不妨设a b c c b a c b a 111,,222≥≥≥≥≥≥则,则bc a b c a 111222⋅+⋅+⋅(乱序和)c c b b a a 111222⋅+⋅+⋅≥(逆序和),同理b c a b c a 111222⋅+⋅+⋅(乱序和)cc b b a a 111222⋅+⋅+⋅≥(逆序和)两式相加再除以2,即得原式中第一个不等式.再考虑数组abac bc c b a 111333≥≥≥≥及,仿上可证第二个不等式. 4.分析:不等式右边各项221ia i a i i ⋅=;可理解为两数之积,尝试用排序不等式. 设n n a a ab b b ,,,,,,2121 是的重新排列,满足n b b b <<< 21, 又.131211222n>>>>所以223221232213232nb b b b n a a a a n n ++++≥++++.由于n b b b ,,21是互不相同的正整数,故.,,2,121n b b b n ≥≥≥ 从而n nb b b b n 121132223221+++≥++++ ,原式得证. 评述:排序不等式应用广泛,例如可证我们熟悉的基本不等式,,22a b b a b a ⋅+⋅≥+.3222333abc ab c ac b bc a ca c bc b ab a a c c b b a c b a =⋅+⋅+⋅≥⋅+⋅+⋅=⋅+⋅+⋅≥++5.思路分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法.ca a c bc c b ab b a 2,2,2223222≥+≥+≥+同理;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.如n n x x x x x x x x x +++≥+++ 2112322221,可在不等式两边同时加上.132x x x x n ++++再如证)0,,(256)())(1)(1(32233>≥++++c b a c b a c b c a b a 时,可连续使用基本不等式.(2)基本不等式有各种变式 如2)2(222b a b a +≤+等.但其本质特征不等式两边的次数及系数是相等的.如上式左右两边次数均为2,系数和为1. 6. 思路分析:不等式左边是a 、b 的4次式,右边为常数81,如何也转化为a 、b 的4次式呢. 要证,8144≥+b a 即证.)(81444b a b a +≥+评述:(1)本题方法具有一定的普遍性.如已知,0,1321≥=++i x x x x 求证:3231x x +.3133≥+x 右侧的31可理解为.)(313321x x x ++再如已知0321=++x x x ,求证:3221x x x x + +013≤x x ,此处可以把0理解为2321)(83x x x ++,当然本题另有简使证法.(2)基本不等式实际上是均值不等式的特例.(一般地,对于n 个正数),,21n a a a调和平均nn a a a nH 11121+++=几何平均n n n a a a G 21⋅= 算术平均na a a A nn +++=21平方平均222221nn a a a Q +++=这四个平均值有以下关系:n n n n Q A G H ≤≤≤,其中等号当且仅当n a a a === 21时成立.7. 证明: 令),,2,1(,n i G a b nii ==则121=n b b b ,故可取0,,21>n x x x ,使得 111322211,,,,x x b x x b x xb x x b n n n n n ====-- 由排序不等式有:n b b b +++ 21=13221x x x x x x n +++ (乱序和)nn x x x x x x 1112211⋅++⋅+⋅≥ (逆序和) =n ,.,2121n n n n n n G na a a n G a G a G a ≥+++≥+++∴即 评述:对na a a 1,,1,121 各数利用算术平均大于等于几何平均即可得,n n A G ≤. 8. 分析:原不等式等价于111)11(1++<++n n n n ,故可设法使其左边转化为n 个数的几何平均,而右边为其算术平均..111121)11()11(1)11()11()11(111++=++=+++<⋅++=++++n n n n n n n n n n n n n个评述:(1)利用均值不等式证明不等式的关键是通过分拆和转化,使其两边与均值不等式形式相近.类似可证.)111()11(21++++<+n n n n (2)本题亦可通过逐项展开并比较对应项的大小而获证,但较繁.9.证明:先证左边不等式nn n n n n nn 1312111)1(131211]1)1[(11++++<-+⇔++++<-+⇔ n n n n n +++++<+131211)1(1nn n n )11()131()121()11()1(1++++++++<+⇔(*)1342321n n n n n +++++<+⇔.1134232134232n n n nn n n n +=+++++>+++++∴ (*)式成立,故原左边不等式成立.其次证右边不等式11)1(131211--⋅--<++++n n n n n1)11()311()211(11)131211(111--++-+-<⇔-++++-<⇔---n n n n n n nn n ⇔ 11322111--+++<-n n n n n (**)(**)式恰符合均值不等式,故原不等式右边不等号成立.。