等精度数字频率计的设计(Design of equal precision digital frequency meter)作者:李欢(电子工程学院光信息科学与技术 1103班)指导教师:惠战强摘要:伴随着集成电路(IC)技术的发展,电子设计自动化(EDA)逐渐成为重要的设计手段,已经广泛应用于模拟与数字电路系统等许多领域。
电子设计自动化是一种实现电系统或电子产品自动化设计的技术,它与电子技术、微电子技术的发展密切相关,它吸收了计算机科学领域的大多数最新研究成果,以高性能的计算机作为工作平台,促进了工程发展。
数字频率计是一种基本的测量仪器。
它被广泛应用于航天、电子、测控等领域。
采用等精度频率测量方法具有测量精度保持恒定,不随所测信号的变化而变化的特点。
本文首先综述了EDA技术的发展概况,FPGA/CPLD开发的涵义、优缺点,VHDL语言的历史及其优点,然后介绍了频率测量的一般原理。
关键字:电子设计自动化;VHDL语言;频率测量;数字频率计AbstractThe Electronic Design Automation (EDA) technology has become an important design method of analog and digital circuit system as the integrated circuit's growing. The EDA technology, which is closely connected with the electronic technology, microelectronics technology and computer science, can be used in designing electronic product automatically.Digital frequency meter is a basic measuring instruments. It is widely used in aerospace, electronics, monitoring and other fields. With equal precision frequency measurement accuracy to maintain a constant, and not with the measured signal varies.We firstly present some background information of EDA, FPGA/CPLD and VHDL;then introduced the general principle of frequency measurement. Keywords: Electronic Design Automation,VHDL, Frequency measurement,digital frequency meter.目录摘要................................................... 错误!未定义书签。
ABSTRACT (1)目录 (2)1. 绪论 (2)1.1电子设计自动化(EDA)发展概述 (3)1.1.1什么是电子设计自动化(EDA ) (3)1.1.2EDA的发展历史 (4)1.2基于EDA的FPGA/CPLD开发 (5)1.2.1FPGA/CPLD简介 (6)1.2.2用FPGA/CPLD进行开发的优缺点 (7)1.3硬件描述语言(HDL) (9)1.3.1VHDL语言简介 (10)1.3.2利用VHDL语言开发的优点 (10)1.4Q UARTUS II概述 (11)2. 频率测量 (13)2.1数字频率计工作原理概述 (13)2.2测频原理及误差分析 (14)2.2.1常用测频方案 (14)2.2.2等精度测频原理 (15)2.2.3误差分析 (16)本章小结 (17)1.绪论21世纪人类将全面进入信息化社会,对微电子信息技术和微电子VLSI基础技术将不断提出更高的发展要求,微电子技术仍将继续是21世纪若干年代中最为重要的和最有活力的高科技领域之一。
而集成电路(IC)技术在微电子领域占有重要的地位。
伴随着IC技术的发展,电子设计自动化(Electronic Design Automation,EDA)己经逐渐成为重要设计手段,其广泛应用于模拟与数字电路系统等许多领域。
EDA是指以计算机大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关开发软件,自动完成用软件方式设计的电子系统到硬件系统的逻辑编译、逻辑化简、逻辑分割、逻辑综合及优化、逻辑布局布线、逻辑仿真,直至对于特定目标芯片的适配编译、逻辑映射、编程下载等工作,最终形成集成电子系统或专用集成芯片的一门新技术。
VHDL(超高速集成电路硬件描述语言)是由美国国防部开发的一种快速设计电路的工具,目前已经成为IEEE(The Institute of Electrical and Electronics Engineers)的一种工业标准硬件描述语言。
相比传统的电路系统的设计方法,VHDL具有多层次描述系统硬件功能的能力,支持自顶向下(Top_Down)和基于库(LibraryBased)的设计的特点,因此设计者可以不必了解硬件结构。
从系统设计入手,在顶层进行系统方框图的划分和结构设计,在方框图一级用VHDL对电路的行为进行描述,并进行仿真和纠错,然后在系统一级进行验证,最后再用逻辑综合优化工具生成具体的门级逻辑电路的网表,下载到具体的CPLD器件中去,从而实现可编程的专用集成电路(ASIC)的设计。
数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差,可靠性差。
随着复杂可编程逻辑器件(CPLD)的广泛应用,以EDA工具作为开发手段,运用VHDL 语言。
将使整个系统大大简化。
提高整体的性能和可靠性。
数字频率计是通信设备、音、视频等科研生产领域不可缺少的测量仪器。
采用VHDL编程设计实现的数字频率计,除被测信号的整形部分、键输入部分和数码显示部分外,其余全部在一片FPGA芯片上实现。
整个系统非常精简,且具有灵活的现场可更改性。
1.1 电子设计自动化(EDA)发展概述1.1.1 什么是电子设计自动化(EDA)在电子设计技术领域,可编程逻辑器件(如PLD,GAL)的应用,已有了很好的普及。
这些器件为数字系统的设计带来极大的灵活性。
由于这类器件可以通过软件编程而对其硬件的结构和工作方式进行重构,使得硬件的设计可以如同软件设计那样方便快捷。
这一切极大地改变了传统的数字系统设计方法、设计过程、乃至设计观念。
纵观可编程逻辑器件的发展史,它在结构原理、集成规模、下载方式、逻辑设计手段等方面的每一次进步都为现代电子设计技术的革命与发展提供了不可或缺的强大动力。
随着可编程逻辑器件集成规模不断扩大,自身功能的不断完善和计算机辅助设计技术的提高,在现代电子系统设计领域中的EDA便应运而生了。
电子设计自动化(EDA)是一种实现电子系统或电子产品自动化设计的技术,它与电子技术、微电子技术的发展密切相关,吸收了计算机科学领域的大多数最新研究成果,以高性能的计算机作为工作平台,是20世纪90年代初从 CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。
EDA技术就是以计算机为工具,在EDA软件平台上,根据硬件描述语言HDL完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局线、仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。
设计者的工作仅限于利用软件的方式来完成对系统硬件功能的描述,在EDA工具的帮助下和应用相应的FPGA/CPLD器件,就可以得到最后的设计结果。
尽管目标系统是硬件,但整个设计和修改过程如同完成软件设计一样方便和高效。
当然,这里的所谓EDA主要是指数字系统的自动化设计,因为这一领域的软硬件方面的技术已比较成熟,应用的普及程度也比较大。
而仿真电子系统的EDA 正在进入实用,其初期的EDA工具不一定需要硬件描述语言。
此外,从应用的广度和深度来说,由于电子信息领域的全面数字化,基于EDA的数字系统的设计技术具有更大的应用市场和更紧迫的需求性。
1.1.2 EDA的发展历史EDA技术的发展始于70年代,至今经历了三个阶段。
电子线路的CAD(计算机辅助计)是EDA发展的初级阶段,是高级EDA系统的重要组成部分。
它利用计算机的图形编辑、分析和存储等能力,协助工程师设计电子系统的电路图、印制电路板和集成电路板图;采用二维图形编辑与分析,主要解决电子线路设计后期的大量重复性工作,可以减少设计人员的繁琐重复劳动,但自动化程度低,需要人工干预整个设计过程。
这类专用软件大多以微机为工作平台,易于学用,设计中小规模电子系统可靠有效,现仍有很多这类专用软件被广泛应用于工程设计。
80年代初期,EDA技术开始设计过程的分析,推出了以仿真(逻辑模拟、定时分析和故障仿真)和自动布局与布线为核心的EDA产品,这一阶段的EDA已把三维图形技术、窗口技术、计算机操作系统、网络数据交换、数据库与进程管理等一系列计算机学科的最新成果引入电子设计,形成了CAE—计算机辅助工程,也就是所谓的EDA技术中级阶段。
其主要特征是具备了自动布局布线和电路的计算机仿真、分析和验证功能。
其作用已不仅仅是辅助设计,而且可以代替人进行某种思维。
CAE这种以原理图为基础的EDA系统,虽然直观,且易于理解,但对复杂的电子设计很难达到要求,也不宜于设计的优化。
所以,90年代出现了以自动综合器和硬件描述语言为基础,全面支持电子设计自动化的ESDA(电子系统设计自动化),即高级EDA阶段、也就是目前常说的EDA。
过去传统的电子系统电子产品的设计方法是采用自底而上(Bottom_Up)的程序,设计者先对系统结构分块,直接进行电路级的设计。
这种设计方式使设计者不能预测下一阶段的问题,而且每一阶段是否存在问题,往往在系统整机调试时才确定,也很难通过局部电路的调整使整个系统达到既定的功能和指针,不能保证设计一举成功。
EDA技术高级阶段采用一种新的设计概念:自顶而下(Top_Down)的设计程序和并行工程(Concurrent engineering )的设计方法,设计者的精力主要集中在所要电子产品的准确定义上,EDA系统去完成电子产品的系统级至物理级的设计。
此阶段EDA技术的主要特征是支持高级语言对系统进行描述,高层次综合(High Level Synthesis)理论得到了巨大的发展,可进行系统级的仿真和综合。