当前位置:文档之家› 各种污水处理设备原理介绍

各种污水处理设备原理介绍

水解酸化罐水解(酸化)处理方法是一种介于好氧和厌氧处理法之间的方法,和其它工艺组合可以降低处理成本提高处理效率。

水解酸化工艺根据产甲烷菌与水解产酸菌生长速度不同,将厌氧处理控制在反应时间较短的厌氧处理第一和第二阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程,从而改善废水的可生化性,为后续处理奠定良好基础。

水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。

微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。

水解酸化池酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。

从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。

水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。

考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。

混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。

而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。

SPIC厌氧反应器1) SPIC厌氧反应器污泥生长速度快SPIC厌氧反应器在处理高浓度废水的同时,能产生大量多余的厌氧颗粒污泥,为企业创造经济效益。

SPIC厌氧反应器的重要技术优势之一就是污泥生长速度快。

国内的相同产品运行不好的根本原因是厌氧污泥生长速度慢或不生长,颗粒污泥的生长直接决定了厌氧反应器运行的好坏及CODcr的去除率。

SPIC厌氧反应器不跑泥是其另一技术优势(这取决于SPIC厌氧反应器内部结构的合理性以及调试技术)。

传统的UASB等厌氧反应器大部分存在严重的跑泥现象,不但不能产生过量的厌氧颗粒污泥,而且随着厌氧反应器的运行,起初加入的厌氧菌种会减少,需要定期购买厌氧颗粒污泥进行补充,为企业增加了经济负担。

2)该厌氧反应器进水pH适应范围广,节省加碱量,为企业降低运行费用若采用普通的厌氧反应器,需加碱将进水pH值调节至6.5-7.5之间,SPIC厌氧反应器具有强大的内部循环系统,对pH起到缓冲作用,使反应器内的pH保持稳定,进水不用调节pH即可满足要求,因此相对于其他传统IC及UASB、EGSB厌氧反应器而言,可减少进水的投碱量,从而节约药剂用量,降低运行费用。

3)布水均匀,无堵塞进水布水器的搅拌作用是厌氧反应器中一个巨大的能量来源,但是当布水器的搅拌作用产生的上升流速达不到一定速度时,反应器内产生的沼气容易在颗粒污泥层中累积,产气量不均匀,造成内循环不稳定,形成一定的恶性循环。

我公司厌氧反应器布水系统经过严格的设计计算,并结合同类废水实际处理经验,将原有点式布水改造成为现有的旋流式布水方式,一方面使得布水更加均匀,另一方面,使得颗粒污泥与废水能更好的混合,使厌氧反应器内保持较高的上升流速,较高的上升流速使得厌氧污泥中产生的沼气能迅速的释放,不在颗粒污泥中停留,相对稳定的运行环境使污泥能快速均匀的生长,保证厌氧反应器的出水效果。

4)耐冲击负荷强由于SPIC中存在着内循环系统,内循环系统的能力主要由反应器内产生的沼气提供,当COD负荷增加时,沼气的产生量随之增加,由此内循环的气提增大。

处理高浓度废水时,内循环的流量可达进水流量的10~20倍。

废水中高浓度和有害物质得到充分稀释,大大降低有害程度,从而提高了反应器的耐冲击负荷能力;当COD负荷较低时,沼气产量也低,从而形成较低的内循环流量。

因此,内循环实际为反应器起到了自动平衡COD冲击负荷的作用。

而仅仅依靠外循环或者是根本就不具备循环系统的EGSB和UASB反应器对废水的负荷变化适应性非常的差,容易造成污泥的解体,造成跑泥现象,而大部分的生产废水均具有生产瞬时性的特点,废水在较短的时间内,水质变化非常大,如果没有良好的循环系统,会导致厌氧反应器运行很差,严重影响出水水质。

5)毒性抑制耐受力一般厌氧反应器内的菌种采用的是污泥菌种内部构成单一,菌种数量及菌群菌种较少,结构非常的简单,因此废水较低的毒性即可抑制细菌的生长甚至将菌种致死。

而SPIC中的颗粒污泥菌种则不同,是由数以千万计,乃至上亿的不同的菌群构成的复杂的生态系统,因而可以适应不同的水质状况及含有毒性物质的废水。

6)系统收益SPIC反应器的表面积较小,而且具备完整的沼气回收系统,将沼气回收利用不但防止了空气污染,而且具备一定得经济效益;不仅如此,SPIC反应器颗粒污泥生长速度快,目前国内颗粒污泥菌种更是供不应求,有颗粒污泥及沼气两部分收益,污水处理站不但能实现零费用运行,还可以有一定的经济收益。

而一般的厌氧反应系统(UASB和EGSB)均存在严重的跑泥现象,在运行过程中不但没有剩余污泥排出,还经常需要补充一定的菌种,运行费用高;7)三相分离器具有很强的耐腐蚀性我公司设计的三相分离器设计合理,使用强耐腐蚀材料,具有耐腐蚀性强,结构强度高等优点,厌氧反应器在运行过程,会产生大量的脂肪酸和沼气,脂肪酸的产生会对设备造成较为严重的腐蚀性,而沼气产生过程中会对反应器内部形成较强的气流压力,对三相分离器形成一定的冲击力,我公司使用的三相分离器具有很强的耐腐蚀性并且结构强度高,厌氧反应过程中产生的酸和气体不会对其造成副作用。

8)调试时间短SPIC初次启动调试时间约为10~15天,二次启动时间约为7~10天,而UASB 和EGSB的初次调试时间分别为60~180天和50天,二次启动时间分别为30~60天和30天,较长的调试时间使得在生产周期内大部分的时间废水不能达标排放严重污染周边环境。

SPIC厌氧反应器设备、管道安装完成,具备调试条件后,15天可使SPIC厌氧反应器出水达到设计负荷,出水水质达到设计水质要求,CODcr去除率达到90%以上。

9)菌种更成熟稳定厌氧工艺的稳定性和高效性很大程度上取决于生成具有优良沉降性能和高甲烷活性的污泥,尤其是颗粒状污泥,我公司SPIC厌氧反应器内产生的颗粒污泥生长速度快,污泥粒度分布均匀,活性更高,而且颗粒污泥的适应温度在30~37℃,适应范围更广,抗冲击能力更强。

SPIC厌氧反应器采用两层三相分离器,泥、水、气能更好的分离,将颗粒污泥截留在反应器内,防止厌氧处理系统跑泥现象的产生,保证较长的固体停留时间,使反应器在较高的生物浓度状态下高效运行。

而国内的传统的厌氧反应器内的菌种污泥多以松散的絮凝状体存在,适应性较差,污泥容易解体,容易出现污泥上浮流失,使传统厌氧反应器不能在较高的负荷下稳定运行。

10)运行状况更好,出水水质更稳定一般的厌氧反应器内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。

与此同时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。

在远离这股上升气、水流的地方容易形成死角。

系统内的这种死角及短流状态使得废水不能得到充分彻底的处理,出水水质不稳定。

芬顿反应器Fenton(中文译为芬顿)是为数不多的以人名命名的无机化学反应之一。

1893年,化学家Fenton HJ 发现,过氧化氢(H2O2) 与二价铁离子的混合溶液具有强氧化性,可以将当时很多已知的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十分显著。

但此后半个多世纪中,这种氧化性试剂却因为氧化性极强没有被太多重视。

但进入20 世纪70 年代,芬顿试剂在环境化学中找到了它的位置,具有去除难降解有机污染物的高能力的芬顿试剂,在印染废水、含油废水、含酚废水、焦化废水、含硝基苯废水、二苯胺废水等废水处理中体现了很广泛的应用。

当芬顿发现芬顿试剂时,尚不清楚过氧化氢与二价铁离子反应到底生成了什么氧化剂具有如此强的氧化能力。

二十多年后,有人假设可能反应中产生了羟基自由基,否则,氧化性不会有如此强。

因此,以后人们采用了一个较广泛引用的化学反应方程式来描述芬顿试剂中发生的化学反应:Fe2+ + H2O2→Fe3+ + (OH)-+OH·①从上式可以看出,1mol的H2O2与1mol的Fe2+反应后生成1mol的Fe3+,同时伴随生成1mol的OH-外加1mol的羟基自由基。

正是羟基自由基的存在,使得芬顿试剂具有强的氧化能力。

据计算在pH = 4 的溶液中,OH·自由基的氧化电势高达2. 73 V。

在自然界中,氧化能力在溶液中仅次于氟气。

因此,持久性有机物,特别是通常的试剂难以氧化的芳香类化合物及一些杂环类化合物,在芬顿试剂面前全部被无选择氧化降解掉。

1975 年,美国著名环境化学家Walling C 系统研究了芬顿试剂中各类自由基的种类及Fe 在Fenton 试剂中扮演的角色,得出如下化学反应方程:H2O2 + Fe3+ → Fe2+ + O2 + 2H+ ②O2 + Fe3+→ Fe2+ + O2·③可以看出,芬顿试剂中除了产生1 摩尔的OH·自由基外,还伴随着生成1 摩尔的过氧自由基O2·,但是过氧自由基的氧化电势只有1.3 V左右,所以,在芬顿试剂中起主要氧化作用的是OH·自由基。

UASB上流式厌氧污泥床引言/UASB厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。

厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。

厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。

在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。

近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。

而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。

对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。

相关主题