精准平衡操作技术简介(水泥熟料烧成操作专利新技术)淄博科邦热工科技有限公司2013前言窑外分解技术在中国出现已经四十多年了。
技术已经很成熟。
以至于如果有人说这个系统还可以进行优化时都很少有人相信。
然而自从窑外分解技术进入到中国以来,至今没有提出一套完整的标准的烧成系统操作的方法。
只有大家在生产实践中基本形成了一定的共识的操作原则:薄料快烧;喷煤管火焰活泼有力,定位在中心线以下;三次风管的阀门开度在35—50%;窑头罩压力控制在-50—0pa;窑皮长度约5D。
按照任何技术都是在发展的观点,虽然窑外分解的基本理论是成熟的,大家也都在按照一些原则进行着操作。
但是日新月异的应用技术的发展,使这种操作技术难一适应。
淄博科邦公司在这些年的生产实践中,在不断为水泥厂解决生产难题的过程中,探讨出了一些新的操作方法。
并组合起来系统的使用,取得了不同于原来操作方法的效果。
在知识产权专家的建议下,这项技术申请了发明专利:《水泥熟料烧成系统控制方法》细细分析起来,这项操作技术的产生应该追溯到1995年我们开始从事中小型旋窑改造的时候。
那时候因为生产线的能力都不大,700t/d的就是大生产线了。
当时很多生产线的熟料冷却都是采用的单筒冷却机。
在生产时,窑头罩都是正压或是微正压。
完全负压的很少。
有些工厂窑头正压到看火都需要拿着像盾牌一样大的看火镜。
当时大家都不明白产生正压的原因,有些工厂甚至将高温风机的风量加大了一倍,祈望将窑头拉成负压,但是没有作用,反而使生产更不稳定了。
当时就有一些文章探讨单筒冷却机的规格和回转窑规格的匹配问题,希望通过匹配来解决窑头正压问题。
也有一些工厂,对窑头罩进行了改造,特别是窑头冷烟室的尺寸。
改造后确实有些效果,但随之带来的是产量和其他方面的影响。
我们在开始从事旋窑改造以后,也研究了这种现象,并在一些在水泥厂工作的专家的启发下,利用组合技术实现了窑头罩的负压工况,同时使旋窑的产量大幅度提高。
在这种情况下逐渐认识了系统空气平衡和烟气平衡的重要性以及其中的一些特殊关系。
真正达到高峰的是利用这方面的技术解决了当时被称为水泥行业老大难问题的河北宣化水泥厂(今张家口金隅)700t/d生产线的达标问题。
在以系统空气平衡为主要指导思想的基础上,没有对系统进行大的改动,只改了一些在他人看来无足轻重的若干细节部位,就使这个建厂10年没有达标的生产线,远远得超过了设计产量而达到了800t/d。
时至今日,科邦公司已经完成了关于分解炉和篦冷机的优化操作的研究,完成了烧煤燃烧器的合理使用的研究,同时完成了在5000t/d以下规模多条生产线应用这项操作技术的工作。
并取得了显著效果。
俗话说,三分技术七分操作(不一定这样区分)。
一个技术设计好的烧成系统,设计者如果不能同时设计出相对应的合理的操作方法,那它就不会充分发挥出设计者期望的性能。
所以科邦公司在推出系统优化技术的同时也推出了这项操作技术(专利)。
希望它与淄博科邦公司推出的其他技术一起,为水泥熟料生产线再次降低热耗,减少有害气体的排放的技术进步做出一些贡献。
以下就是这项专利技术的介绍。
技术简介水泥熟料烧成系统的操作,是直接关系到水泥质量和成本的重要工作。
因此,掌握先进的、正确合理的、精准的、高水平的操作技术是水泥厂中控工作的最重要的任务。
新型干法水泥生产技术的核心是悬浮预热和窑外分解技术。
因此,采用窑外分解技术的烧成系统,首先需要保证窑尾预热器系统特别是分解炉的正常、稳定、高效的工作。
并使其最大限度的发挥预热预分解作用。
而目前正在运行的新型干法熟料烧成生产线,多年以来一直都延续一种基本相同得原则和方法来操作。
这种方法在运行中的表现特点为:三次风管的阀门开度控制在30---50%,以加强窑内通风;喷煤管的火焰调整为活泼有力,把喷煤管定位在第四象限,加强火焰对熟料的直接热交换作用;把窑头罩压力控制在-50----0pa;窑转速达到最高转,实现薄料快烧。
随着新型干法生产技术的进步和社会环境对节能减排和减少氮氧化物等有害气体排放要求的不断提高。
这种旧有的操作方法已经逐渐感到难以适应这些要求。
例如:控制窑内的煤粉在低过剩空气系数的工况下燃烧(α≦1.05),可以减少氮氧化物的生成量,减少系统脱硝的成本,就是一个突出的例子;很多窑如果这样操作,就会出现熟料呈现还原气氛的现象,严重影响熟料质量。
还有,将喷煤管定位在中心以上位置,使火焰的中心落点移动到窑尾,可以使生料入窑后快速通过过渡带,进入烧成带,这样生料升温速度快,CaO的吸收速度也越快,越有利于C3S的形成。
短粗窑的原理就是根据此理论形成的。
并确实实现了降低热耗的好作用。
这种定位同时可以减少煤灰落入熟料的机率,提高熟料的质量。
是将来降低热耗和运行成本的一种的操作方法。
而目前的操作方法都较难做到这一点。
精准平衡操作技术是建立在淄博科邦公司对烧成系统优化理论的基础上。
其中科邦公司创始人郭红军先生《关于分解炉的优化和操作》;《篦冷机的优化和操作》;《烧煤燃烧器的合理使用》等系列讲座中的理论解释和对烧成系统的全面认识和分析,为这种操作方法奠定了基础。
同时指导着这种种操作技术的合理应用。
“精准平衡操作技术”的核心是:以理论计算、数据分析为依据;以系统空气平衡为前提(包括窑的烟气平衡);以保证分解炉用风(三次风)和烧成带恒温煅烧为重点;以窑头罩的温度、压力两个数据为主要控制参数;通过合理调整窑头喷煤管的四个风速和风量的匹配、合理篦冷机的操作,最终实现熟料烧成的高质、高产、低消耗、低排放的目标。
这项操作技术在系统运行参数中的表现特点为:1三次风管的阀门开度在85--100%;2喷煤管定位在窑口中心线以上(0,10--50);3根据窑头罩的容积合理控制窑头罩压力。
1以理论计算、数据分析为依据,以系统空气平衡为前提(包括窑的烟气平衡)采用这项技术进行操作之前,首先要进行系统分析计算。
弄清楚系统中各部位的空气来源和数量。
弄清楚排出多余空气的数量和能力以及排出烟气的能力。
清楚篦冷机内零压点的位置和对应的风机数量。
制作简单的平衡图(见下)。
然后进行分析。
1.1悬浮预热预分解系统的分解炉有三十几种。
这些分解炉由于结构不同、规格不同或是结构相同参数不同,以及配套的喷煤管不同,其性能是不一样的。
而且运行中需要的空气量也不一样。
以5000t/d的D-D炉窑尾系统为例:这种炉型其过剩空气系数需要1.15。
在产量达到5700吨时,分解炉的用风量为132941m3/h。
进入分解炉时的工况风量为603576m3/h。
按照此平衡数据计算,窑内的烟气量为526683m3/h(工况),窑尾烟室缩口的实际风速为32--33m/s;如果在操作中将三次风管的阀门关到很小,窑内的实际通风就更大了,所以缩口的风速就会更高。
这时如果窑尾烟室缩口的直径是一样的话,分解炉内的气体流场就会因为三次风风速和风量脱离设计时的工况,使分解炉不能按照设计参数来发挥作用,使系统的能力受到了限制。
1.2系统中采用的篦冷机在冷却风机的配套风量上也不一样;一般第三代篦冷机的冷却风量大约是2.3nm3/kgcl。
而第四代篦冷机的冷却风量仅有1.5-1.8nm3/kgcl。
这样余风抽取口和煤磨抽风口的位置设置就应该不一样。
烧成系统用风量和余风排风量的分界线(也即人们常说的篦冷机的“零压点”)就不一样了。
如果“零压点”内设置了取风口,那么在操作时就很难保证系统运行时的燃烧空气量。
即使“零压点”在抽取口之内,如果冷却风机的实际供风量(阀门开度或者转速)不能达到设计要求,则“零压点”就会向后移动到取风口的位置。
而这时仍然不容易保证系统用风。
或者是以高的用煤量来保证系统运行。
仍以5000t/d的烧成系统为例:在产量达到5700吨时,热耗105kgce/tcl时,需要用的空气量为219888m3/h。
一般情况下,篦冷机的一段篦床配套风机有六台,其总风量基本正好满足。
但是在实际运行中,很多风机的进风口阀门开度只有70-90%,或者是变频器的频率调整在45Hz以下,这样一来,一段的供风量就不能满足燃烧用空气的要求了。
在这种情况下,如果再继续提高产量,将会造成用煤量大幅增加的现象(有很多工厂的实际情况已经验证了这一点),使熟料的热耗急剧增加。
形成产量越高,热耗越高的现象。
而且还会因为煤粉不能充分燃烧,容易造成质量不稳定的状况。
所以,操作时就需要考虑如何用二段的风机来提供风量的问题;或者是提高喷煤管的供风量来保证空气量。
但这样做在实际操作时一般的操作人员很难做到。
1.3对于小窑头罩结构的系统来说,由于其窑内用风和分解炉用风是分别从篦冷机的不同位置引风的。
这样就需要多考虑一种因素:如果窑头罩的尺寸范围内的冷却风机供风量不能满足窑内煤粉燃烧的需要,就需要调整三次风管的取风口的位置,或是调整三次风取风口的尺寸。
再或是关小三次风管阀门,控制三次风管在此范围内的抽风量。
这样一来,系统地整体阻力就会增加,高温风机的实际风量就会减少,电机的电流就会增大了;所以,一个设计合理的烧成系统除了预热器、分解炉设计合理之外,还需要窑头罩结构、篦冷机的冷却风机、余风排放口的位置、三次风管直径、送煤管道规格及布置等等细节设计合理。
才能保证系统中各部件的能力充分匹配,才能使操作人员在采用合理的操作方法时,使系统发挥出全部能力。
以理论计算、数据分析为依据,以系统空气平衡为前提(包括窑的烟气平衡)来进行操作,就是让操作者在进行操作之前,就做到心中有数。
可以使系统快速准确的进入到最佳状态。
2以保证分解炉用风(三次风)和烧成带恒温煅烧为重点;新型干法水泥生产技术的核心是悬浮预热和窑外分解技术。
因此,采用窑外分解技术的烧成系统,首先需要保证窑尾预热器系统特别是分解炉的正常稳定工作。
并使其最大限度的发挥作用。
任何一个分解炉都是通过模拟试验和工业试验得出其性能地。
同时在实际应用到生产线中去的时候,都利用放大系数进行了修正。
即使这样,实际应用中也会因为种种原因而与试验数据有些差别。
三次风大多数都是由窑头罩的上方抽取,也有从篦冷机的壳体上抽取的。
当高温的二次风经过窑头罩下部的烟室去往窑内和分解炉的时候,回转窑内的气体流速因为喷煤管的高速射流的作用,其阻力要小于三次风管(窑皮过厚和结构不合理除外)。
因此窑内的通风比较容易保证。
而分解炉就要难一些。
所以为了保证预分解系统的作用,首先要保证分解炉的用风,这样,三次风管的阀门就应该尽可能的打开。
但是,一般的烧成系统,如果打开的幅度超过50--60%,都会出现感觉窑内通风不足的现象。
所以,在操作中就需要有另外的操作来进行相应的配合。
以实现这种首先保证分解炉性能的操作方法。
这样操作的结果与以往相比,增加了分解炉的用风量,保证了分解炉内实际流场更加接近设计的流场,保证并提高了分解炉的性能。