磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。
磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。
1 基本原理
磷化过程包括化学与电化学反应。
不同磷化体系、不同其材的磷化反应机理比较复杂。
虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。
在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:
8Fe+5Me(H2PO4)2+8H2O+H3PO4
Me2Fe(PO4)2•4H2O(膜)+Me3(PO4)•4H2O(膜)+7FeHPO4(沉渣)+8H2↑
Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。
这个机理解释比较粗糙,不能完整地解释成膜过程。
随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:
①酸的浸蚀使基体金属表面H+浓度降低
Fe –2e→ Fe2+
2H2++2e→2[H] (1)
H2
②促进剂(氧化剂)加速
[O]+[H] → [R]+H2O
Fe2++[O] → Fe3++[R]
式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。
同时也将溶液中的Fe2+氧化成为Fe3+。
③磷酸根的多级离解
H3PO4+H2PO4-+H+ +HPO42-+2H+ +PO43-+3H-(3)
由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。
④磷酸盐沉淀结晶成为磷化膜
当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数K sp时,就会形成磷酸盐沉淀
Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2•4H2O↓ (4)
3Zn2++2PO43-+4H2O=Zn3(PO4)2•4H2O↓ (5)
磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。
磷酸盐沉淀的副反应将形成磷化沉渣
Fe3++PO43-=FePO4(6)
以上机理不仅可解释锌系、锰系、锌钙系磷化成膜过程,还可指导磷化配方与磷化工艺的设计。
从以上机理可以看出:适当的氧化剂可提高反应(2)的速度;较低的H+浓度可使磷酸根离解反应(3)的离解平衡更易向右移动离解出PO43-;金属表面如存在活性点面结合时,可使沉淀反应(4)(5)不需太大的过饱和即可形成磷酸盐沉淀晶核;磷化沉渣的产生取决于反应(1)与反应(2),溶液H+浓度高,促进剂强均使沉渣增多。
相应,在实际磷化配方与工艺实施中表面为:适当较强的促进剂(氧化剂);较高的酸比(相对较低的游离酸,即H+浓度);使金属表面调整到具备活性点均能提高磷化反应速度,能在较低温度
下快速成膜。
因此在低温快速磷化配方设计时一般遵循上述机理,选择强促进剂、高酸比、表面调整工序等。
关于磷化沉渣。
因为磷化沉渣主要是FePO4,要相减少沉渣量就必须降低Fe3+的产生量,即通过两个方法:降低磷化液的H+浓度(低游离酸度)减少Fe2+氧化成为Fe3+。
锌材与铝材磷化机理基本与上相同。
锌材的磷化速度较快,磷化膜只有磷酸锌盐单一组成,并且沉渣很少。
铝材磷化一般要加入较多的氟化合物,使之形成AlF3、AlF63-,铝材磷化步聚与上述机理基本相同。
磷化(Ⅱ)——磷化前的预处理
一般情况下,磷化处理要求工件表面应是洁净的金属表面(二合一、三合一、四合一例外)。
工件在磷化前必须进行除油脂、锈蚀物、氧化皮以及表面调整等预处理。
特别是涂漆前打底用磷化还要求作表面调整,使金属表面具备一定的―活性‖,才能获得均匀、细致、密实的磷化膜,达到提高漆膜附着力和耐腐蚀性的要求。
因此,磷化前处理是获得高质量磷化膜的基础。
1 除油脂
除油脂的目的在于清除掉工件表面的油脂、油污。
包括机械法、化学法两类。
机械法主要是:手工擦刷、喷砂抛丸、火焰灼烧等。
化学法主要:溶剂清洗、酸性清洗剂清洗、强碱液清洗,低碱性清洗剂清洗。
以下介绍化学法除油脂工艺。
1.1 溶剂清洗
溶剂法除油脂,一般是用非易燃的卤代烃蒸气法或乳化法。
最常见的是采用三氯乙烷、三氯乙烯、全氯乙烯蒸汽除油脂。
蒸汽脱脂速度快,效率高,脱脂干净彻底,对各类油及脂的去除效果都非常好。
在氯代烃中加入一定的乳化液,不管是浸泡还是喷淋效果都很好。
由于氯代卤都有一定的毒性,汽化温度也较高,再者由于新型水基低碱性清洗剂的出现,溶剂蒸汽和乳液除油脂方法现在已经很少使用了。
1.2 酸性清洗剂清洗
酸性清洗剂除油脂是一种应用非常广泛的方法。
它利用表面活性剂的乳化、润湿、渗透原理,并借助于酸腐蚀金属产生氢气的机械剥离作用,达到除油脂的目的。
酸性清洗剂可在低温和中温下使用。
低温一般只能除掉液态油,中温就可除掉油和脂,一般只适合于浸泡处理方式。
酸性清洗剂主要由表面活性剂(如OP类非离子型活性剂、阴离子磺酸钠型)、普通无机酸、缓蚀剂三大部分组成。
由于它兼备有除锈与除油脂双重功能,人们习惯称之为―二合一‖处理液。
常见的酸性清洗剂配方及工艺参数见下表。
工艺低温型中温型磷酸酸基型
工业盐酸(31%)20%~50% 0 0
工业硫酸(98%)0%~15% 15%~30% 0
工业磷酸(85%)0 0 10%~40%
表面活性剂
(OP类,磺酸类) 0.4%~1.0% 0.4%~1.0% 0.4%~1.0%
缓蚀剂适量适量适量
使用温度常量~45℃50~80℃常温~80℃
处理时间适当5~10min 适当<
盐酸、硫酸酸基的清洗剂应用最为广泛,成本低,效率较高。
但酸洗残留的Cl-、SO42-对工件的后腐蚀危害很大。
而磷酸酸基没有腐蚀物残留的隐患,但磷酸成本较高,清洗效率低些。
对于锌件,铝件一般不采用酸性清洗剂清洗,特别锌件在酸中的腐蚀极快。
1.3强碱液清洗
强碱液除油脂是一种传统的有效方法。
它是利用强碱对植物油的皂化反应,形成溶于水的皂化物达到除油脂的目的。
纯粹的强碱液只能皂化除掉植物油脂而不能除掉矿物油脂。
因此人们通过在强碱液中加入表面活性剂,一般是磺酸类阴离子活性剂,利用表面活性剂的乳化作用达到除矿物油的目的。
强碱液除油脂的使用温度都较高,通常〉80℃。
常用强碱液清洗配方与工艺如下:
氢氧化钠5%~10%
硅酸钠2%~8%
磷酸钠(或碳酸钠)1%~10%
表面活性剂(磺酸类)2%~5%
处理温度>80℃
处理时间5~20min
处理方式浸泡、喷淋均可
强碱液除油脂需要较高温度,能耗大,对设备腐蚀性也大,并且材料成本并不算低,因此这种方法的应用正逐步减少。
1.4低碱性清洗液清洗
低碱性清洗液是当前应用最为广泛的一类除油脂剂。
它的碱性低,一般pH值为9~12。
对设备腐蚀较小,对工件表面状态破坏小,可在低温和中温下使用,除油脂效率较高。
特别在喷淋方式使用时,除油脂效果特别好。
低碱性清洗剂主要由无机低碱性助剂、表面活性剂、消泡剂等组成。
无机型助剂主要是硅酸钠、三聚磷酸钠、磷酸钠、碳酸钠等。
其作用是提供一定的碱度,有分散悬浮作用。
可防止脱下来的油脂重新吸附在工件表面。
表面活性剂主要采用非离子型与阴离子型,一般是聚氯乙烯OP类和磺酸盐型,它在除油脂过程中起主要的作用。
在有特殊要求时还需要加入一些其它添加物,如喷淋时需要加入消泡剂,有时还加入表面调整剂,起到脱脂、表调双重功能。
低碱性清洗剂已有很多商业化产品,如PA30-IM、PA30-SM、FC-C4328、Pyroclean442等。
一般常用的低碱性清洗液配方和工艺如下:
浸泡型喷淋型
三聚磷酸钠4~10g/l 4~10g/l
硅酸钠0~10g/l 0~10g/l
碳酸钠4~10g/l 4~10g/l
消泡剂0 0.5~3.0g/l
表面调整剂0~3 g/l 0~3 g/l
游离碱度5~20点5~15点
处理温度常温~80℃40~70℃
处理时间5~20min 1.5~3.0min
浸泡型清洗剂主要应注意的是表面活性剂的浊点问题,当处理温度高于浊点时,表面活性剂析出上浮,使之失去脱脂能力,一般加入阴离子型活性剂即可解决。
喷淋型清洗剂应加入足够的消泡剂,在喷淋时不产生泡沫尤为重要。
铝件、锌件清洗时,必须考虑到它们在碱性条件下的腐蚀问题,一般宜用接近中性的清洗剂。