当前位置:文档之家› (完整版)列车运行控制系统期末考试重点总结

(完整版)列车运行控制系统期末考试重点总结

列控定义:列车运行全过程或一部分作业实现自动控制的系统,可以根据列车在线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整。

列控作用:(1)保障行车安全。

识别、消除或减弱危及安全的因素。

发现时,向列车发出停车或降速命令(2)保证运输效率。

列控系统确定列车最小安全制动距离,最大限度提高线路通过能力。

列控原理:地面设备根据前方行车条件,包括轨道占用情况、进路状态、线路状况以及调度命令,生成行车许可,通过车地通信技术传给车载设备,结合列车数据,车载设备自动计算生成超速防护曲线,并实时与列车运行速度进行比较,超速(允许速度)后及时进行控制,防止列车超速脱轨或与前行列车追尾。

列控功能:1.给司机显示允许列车运行的信号、目标距离、目标速度、允许速度等。

2.防止列车超过规定的限制速度运行,包括信号显示规定的限制速度、线路限速、车辆限速、临时限速等。

3.自动实施速度控制,一旦列车速度超过允许速度,应实施制动控制,使列车减速甚至停车。

4.防止与同一轨道运行的列车相撞或追尾。

分级特点:1.CTCS-0干线铁路装备的既有铁路信号设备;地面设备:国产轨道电路构建三显示/四显示自动闭塞,轨道电路实现;车载设备:通用机车信号,列车运行监控记录装置LKJ;固定闭塞 2.CTCS-1由主体机车信号+安全型运行监控装置组成,面向160km/h及以下的区段,在既有设备基础上强化改造,增加点式设备,实现列车运行安全监控功能。

3.CTCS-2提速干线、高速铁路;应答器、ZPW-2000A轨道电路共同完成车地通信;配置车站列控中心TCC,根据地面信号系统计算列车移动授权凭证;车载ATP+LKJ2000,凭车载信号行车;可下线在CTCS1/0线路;准移动闭塞,地面可不设区间通过信号机 4.CTCS-3主要面向高速铁路;车载配置ATP,凭车载信号行车;RBC基于地面信号系统计算列车移动授权;无线通信(GSM-R)传输车地信息;轨道电路检查列车占用,应答器为列车定标;地面可不设区间通过信号机;可下线在CTCS2线路;准移动闭塞;等同于ETCS-2 5.CTCS-4面向高速铁路;CTCS车载设备ATP,凭车载信号行车;车载设备发送列车参数,无线闭塞中心RBC跟踪;列车位置并计算列车移动授权;取消区间轨道电路和通过信号机(移动闭塞);无线通信(例如:GSM-R、LTE-R等);列车完整性检查由地面RBC和列车完整性验证系统完成;等同于ETCS-3加速牵引:C=F-W匀速惰行:C=-W减速制动:C=-(B+W) F牵引力,B制动力,W阻力牵引力分析:轮轨间的纵向水平作用力超过最大静摩擦力时,轮轨接触点将发生相对滑动,机车动轮在强大力矩的作用下快速转动,轮轨间的纵向水平作用力变成了滑动摩擦力,其数值比最大静摩擦力小很多,而列车运行速度很低,这种状态称为“空转”。

空转的危害:局部与车轮接触的钢轨将受到严重摩擦,造成严重耗损钢轨,甚至导致车轮陷入钢轨磨损产生的深坑内。

该状态下牵引力反而大幅降低,钢轨和车轮都将遭受剧烈磨损。

打滑(制动力):当制动力大于黏着力时,轮轨将发生滑行,即车轮将被“抱死”。

此时制动力变为轮轨间的滑动摩擦系数,闸瓦间的摩擦力由动摩擦力变为静摩擦力。

由于滑动摩擦系数远小于滚动摩擦系数,因此轮对一旦滑行,制动力将迅速下降。

基本阻力:列车在理想线路条件下,沿平直轨道运行时遇到的阻力,列车运行中任何情况下都存在的阻力。

是列车内部或外界之间的相互摩擦和冲击产生的,包括:机械阻力和气动阻力。

列车基本阻力的公式 w 0=W 0/M式中:M—列车总重;W 0—列车运行基本阻力;Q—中间车辆数;v—列车运行速(km/h);△v —逆风风速(km/h);a 、b 、c—与机械阻力相关的系数;d—每辆车车与空气阻力相关的阻力系数;e—头车和尾车空气阻力相关的阻力系数之和。

附加阻力是指列车在非理想线路条件上运行时受到的额外阻力。

坡道附加阻力:,其中BC/AB=sinθ曲线附加阻力:Wr=600g/R (N/t) R——曲线半径(m) Wr=10.5αg/L r (N/kN) Lr——曲线长度(m),α——曲线转角隧道空气附加阻力:有限制坡道时 w s =0.0001LsVs² (N/kN)无限制坡道时 w s =0.13Ls Ls—隧道长度(km),Vs—列车在隧道内的运行速度制动方式:1.摩擦制动(1)闸瓦制动(踏面制动)(2)盘形制动:制动盘固定于车轴上时称为轴盘式盘型制动,制动盘连接在车轮上,称为轮盘式盘形制动。

2.动力制动 分为:电阻制动、再生制动、圆盘涡流制动和线性涡流制动。

制动力计算:全列车的制动力等于全列车的闸瓦压力与轮瓦摩擦系数的乘积之和。

制动力也要受到轮轨间黏着条件的限制:式中Q—轴荷重,μ—轮轴间的制动粘着系数A.滑动现象在空车中更容易发生;B.当轨面状况不好时,黏着系数下降,易出现滑行。

C.紧急制动时,闸瓦压力K大,容易出现滑行。

D.当速度降低时,黏着系数略大,而摩擦系数随速度下降急剧增加,因此在低速尤其是快停车时,更容易滑行。

制动距离的计算:式中 S—制动距离(m); v—制动末速度(km/h);v0—制动初速度(km/h)式中 Sk—空走距离;Se—实制动距离式中 tk—空走时间(s); v0—制动初速(km/h)行车闭塞:按照一定的规定和信号设备组织行车(使用信号或凭证),对追踪列车进行间隔控制(空间间隔制),避免列车追尾或相撞。

空间闭塞(间隔)法:将线路划分为若干个区段,在每个区段内同时只准许一列列车运行的行车方法。

人工闭塞:采用电气路签或路牌作为列车占用该区间的凭证,由接车站值班员检查区间是否空闲。

依靠人工完成。

半自动闭塞:人工办理闭塞手续,列车凭信号显示发车后,车站信号机自动关闭。

特点:站间或所间只准许行一列车;人工办理闭塞手续;人工确认列车完整到达;人工恢复闭塞。

自动站间闭塞:在有区间占用检查条件下,自动办理闭塞手续,列车凭信号显示发车后,车站信号机自动关闭。

特点:有区间占用检查设备;站间或所间闭塞只准走行一列车;办理发车进路时自动办理闭塞手续;自动确认列车到达和自动恢复闭塞。

自动(区间)闭塞:将站间划分为若干个闭塞分区,设置闭塞分区占用检查设备,每个闭塞分区的起点装设通过信号机,根据列车运行及轨道占用检查,自动控制信号机的显示,司机凭信号显示行车。

办理发车进路时自动办理闭塞手续,通过信号自动变换。

可以实现站间的列车追踪运行,提高了运输效率。

用于双线铁路。

虚拟闭塞:是固定闭塞的一种特殊形式,以虚拟方式(设置通信模块和定位信标)将区间划分为若干个虚拟闭塞分区,并设置虚拟信号机进行防护。

固定闭塞:两列运行列车之间的空间间隔是若干个长度固定的闭塞分区,一般设地面通过信号机,保证列车按照空间间隔制运行。

基本原则:不能授权列车进入已被另一列车占用的分区;两追踪列车之间的间隔距离必须始终大于后车的制动距离,保证两辆列车不会追尾。

三显示自动闭塞:绿灯(通行):表示前方两个闭塞分区空闲,列车可以按规定速度运行;黄灯(警惕):表示前方只有一个闭塞分区空闲,列车可以越过黄灯后再开始制动;红灯(停车):表示列车在红灯前停车。

进路式信号:信号没有速度含义,仅表示前方闭塞分区是否空闲以及空闲状态四显示自动闭塞:绿灯(通行):表示160/160,入口速度为160km/h,出口速度(即目标速度)为160km/h;绿黄(警惕):表示160/115;黄灯(限速):表示115/0;红灯(停车):表示0km/h,即前方占用,不得冒进。

比较:三显示用一个闭塞分区满足列车全制动距离的需要,四显示用两个较短的闭塞分区满足列车全制动距离的需要,适应了提速的需求,缩短了列车追踪间隔,提高了运输能力。

准移动闭塞:基于固定闭塞的目标—距离控制方式,保留固定闭塞分区,以前方列车占用闭塞分区入口确定目标点,通过地车信息传输系统向列车传送目标速度、目标距离等信息。

这种闭塞方式称为准移动闭塞。

移动闭塞:追踪列车的目标点是前行列车的尾部加一个安全距离,实时与前车保持安全制动距离,闭塞分区随列车移动而“移动”最限制速度: 综合考虑列车在区域各类限制速度得出的最低值(即最不利限制部分或最严格限制速度),简称最限制速度。

速度防护曲线模式:速度-距离模式曲线是根据目标速度、目标距离、线路参数、列车参数、制动性能等确定的反映列车允许速度与目标距离间的关系曲线。

根据制动曲线的形状,速度-距离模式曲线可分为分段曲线控制和目标-距离控制。

根据所需信号含义和速度控制方式,分为:阶梯速度控制方式和速度-距离模式曲线控制方式从列车安全间隔距离的构成与计算,比较速度防护方式在运输效率的差别。

(1)阶梯速度控制(防护)方式和分段曲线控制(防护)方式的安全间隔距离构成基本相同, 计算式为:S=(S1+S2+S3+S4)n ,其中:S1—车载设备接收地面列控信号响应过程中列车走行距离;S2—列车制动设备响应过程中列车走行距离;S3—列车制动距离(性能最差列车的最大安全制动距离:含空走和有效走行);S4—安全防护距离(过走防护距离);n—列车从最高速度停车制动所需阶梯(分区数)。

(2)基于固定闭塞(准移动闭塞)的目标距离控制(防护)方式的列车防护目标距离(小于安全追踪间隔距离)为:L=L0+Lz+L3,其中:L0—列控设备反映时间内走行距离;Lz—每列车的实际最大安全制动距离(列车性能好数值小,性能差数值大);L3—列车过走防护距离。

(3)基于移动闭塞的目标距离控制(防护)方式的安全追踪间隔距离(等于列车防护目标距离)为:S= S l+ S2+S3+S4 ,其中:S l—车载设备接收地面列控信号反映时间距离;S2—列车制动响应时间距离;S3—每列车的实际最大安全制动距离;S4—过走防护距离。

比较分析:阶梯速度控制(防护)和分段曲线控制(防护)方式是按照制动性能最差列车安全制动距离要求,以一定的速度等级将轨道划分成若干固定区段,所以对制动性能好的列车其能力将不能得到充分发挥,而目标距离控制(速度—距离模式曲线控制)则由于车载设备按本车实际性能实时计算控制模式曲线,可以列车实际性能自行控制其追踪间隔,使各个列车的性能得以充分发挥。

因此,目标距离模式的运输效率高于阶梯速度方式和分段曲线控制方式。

行车许可(移动授权MA),允许列车在基础设施限制内运行到轨道上指定的位置。

行车许可终点(EOA)是行车防护界限点,目标点与它的距离为安全距离。

EOA包括:被占用闭塞分区的入口(固定闭塞或准移动闭塞)、前行列车安全后端(移动闭塞)、为进路设置的道岔警冲标等。

行车许可证原理:固定闭塞:地面设备通过检测前车的占用,以前车所在的闭塞分区的起点向后车方向顺序控制信号的开放,生成行车许可。

相关主题