通风管道的设计计算
定其孔口面积、风管各断面直径及总阻力。
解:1、确定孔口平均流速v0,
v0 4.5m / s
f0
8000 8 3600
4.5
0.062
返回 继续
注意:把每一段起始断面的动压作为该管段的平均 动压,并假设μ、λ为常数,将产生一定误差,但在 工程实际是允许的。
第六章:通风管道的设计计算
一、系统划分
二、实现均匀送风的基本条件: 保持各侧孔静压、流量系数相等, 增大出流角。 1、保持各侧孔静压Pj相等;
2、保持各侧孔流量系数μ相等;
μ与孔口形状、流角α以及L0/L= L0
有关,当α大于600, μ一般等于0.6
3、增大出流角α,大于600,接近900。
三、直流三通局部阻力系数和侧孔流量系数
第六章:通风管道的设计计算
通风管道系统划分
二、风管布置
❖ 风管布置直接关系到通风、空调系统的总体布置,它与工艺、土建、电气、给 排水等专业关系密切,应相互配合、协调一致。
❖ 1.除尘系统的排风点不宜过多,以利各支管间阻力平衡。如排风点多,可用大 断面集合管连接各支管。集合管内流速不宜超过3m/s,集合管下部设卸灰装置。
❖ 当风管中流速较高,风管直径较小时,例如除尘系统和高速 空调系统都用圆形风管。当风管断面尺寸大时,为了充分利 用建筑空间,通常采用矩形风管。例如民用建筑空调系统都 采用矩形风管。
❖ 计算前,完成管网布置,确定流量分配
➢ 绘系统图,编号,标管段L和Q,定最不利 环路。
➢ 根据资用动力,计算其平均Rm。 ➢ 根据Rm和各管段Q,确定其各管段管径。 ➢ 确定各并联支路的资用动力,计算其Rm 。 ➢ 根据各并联支路Rm和各管段Q,确定其管
径。
水力计算步骤(静压复得法)
❖ 计算前,完成管网布置 ➢ 确定管道上各孔口的出流速度。 ➢ 计算各孔口处的管内静压Pj和流量。 ➢ 顺流向定第一孔口处管内流速、全压和管道尺寸。 ➢ 计算第一孔口到第二孔口的阻力P1·2。 ➢ 计算第二孔口处的动压 Pd2。 ➢ 计算第二孔口处的管内流速,确定该处的管道尺寸。 ➢ 以此类推,直到确定最后一个孔口处的管道断面尺寸。
例2 同例1
解:v=1÷(0.4 × 0.5)=5 m/s
DL=1.3(ab)0.625/(a+b)0.25=478mm 查图2-3-1 得Rm0=0.61Pa/m Kr=(3 ×5)0.25=1.96 Rm=1.96 ×0.61=1.2Pa/m
第六章:通风管道的设计计算
❖ 2. 局部阻力
❖ 局部阻力计算式为:
❖ 4.除尘系统的划分应符合下列要求:
❖ (1)同一生产流程、同时工作的扬尘点相距不大 时,宜合为一个系统;
❖ (2)同时工作但粉尘种类不同的扬尘点,当工艺 允许不同粉尘混合回收或粉尘无回收价值时,也可 合设一个系统;
❖ (3)温湿度不同的含尘气体,当混合后可能导致 风管风结露时,应分设系统。
❖ 5.如排风量大的排风点位于风机附近,不宜和远 处排风量小的排风点合为同一系统。增设该排风点 后会增大系统总阻力。
❖ 当车间内不同地点有不同的送、排风要求,或车间面积较大,送、排风 点较多时,为便于运行管理,常分设多个送、排风系统。除个别情况外, 通常是由一台风机与其联系在一起的管道及设备构成一个系统。系统划 分的原则:
❖ 1.空气处理要求相同、室内参数要求相同的,可划为同一系统。 ❖ 2.同一生产流程、运行班次和运行时间相同的,可划为同一系统。 ❖ 3.对下列情况应单独设置排风系统: ❖ (1)两种或两种以上的有害物质混合后能引起燃烧或爆炸; ❖ (2)两种有害物质混合后能形成毒害更大或腐蚀性的混合物或化合物; ❖ (3)两种有害物质混合后易使蒸汽凝结并积聚粉尘; ❖ (4)放散剧毒物质的房间和设备。
1、直流三通局部阻力系数:由L0/L查表2-3-6; 2、侧孔流量系数μ=0.6~0.65; 四、均匀送风管道计算方法
确定侧孔个数、侧孔 间距、每个孔的风量
计算侧孔面积
计算送风管道直 径和阻力
返回 继续
五、计算例题
如图所示:总风量为8000m3/h的圆形均匀送风管道 采用8个等面积的侧孔均匀送风,孔间距为1.5M,确
阻力由空气的粘性力及空气与管壁之间的摩 擦作用产生, 它发生在整个管道的沿程上, 因此也称为沿程阻力。
第六章:通风管道的设计计算
❖ 管道的阻力计算
❖ 局部阻力则是空气通过管道的转弯, 断 面变化, 连接部件等处时, 由于涡流、冲击 作用产生的能量损失.
<流体输配管网>
6.1.1摩擦阻力的计算
Pml
68 Re
K d
0.25 1ຫໍສະໝຸດ 2lg2.51
Re
K 3.7d
2.3.1.2摩擦阻力计算
<流体输配管网>
λ值的确定
1
2
lg
2.51
Re
K 3.7D
Rm
d
v22
2
Rm值的计算和修正 制成图表,已知流量、管径、流速、阻力四个参数中
两个,可查得其余两个,是在一定条件下锝出
Rm值的计算和查取(标准状态下):
❖ 2. 局部阻力 ❖ (2) 减少风管的转弯数量, 尽可能增大转弯
半径; ❖ (3) 三通汇流要防止出现引射现象, 尽可能
做到各分支管内流速相等. 分支管道中心线 夹角要尽可能小, 一般要求不大于30°; ❖ (4) 降低排风口的出口流速, 减少出口的动 压损失; ❖ (5) 通风系统各部件及设备之间的连接要合 理, 风管布置要合理.
面500×400mm,L=1m3/s,求Rm
解:v=1÷(0.4 × 0.5)=5 m/s
Dv=2ab/(a+b)=444mm 查图2-3-1 得Rm0=0.62Pa/m Kr=(3 ×5)0.25=1.96 Rm=1.96 ×0.62=1.22 Pa/m
(2)流量当量直径
DL
1.3
(ab)0.625 (a b)0.25
❖ 排送细小粉尘
80mm
❖ 排送较粗粉尘(如木屑)
100mm
❖ 排送粗粉尘(有小块物体) 130mm
❖ 5.排除含有剧毒物质的正压风管,不应穿过其它房间。
❖ 6.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定 孔和采样孔等)或预留安装测量装置的接口。调节和测量装置应设在便于操作 和观察的地点。
3600f0
vj v
v
3600f0
2pj
由上式得f0上的平均流速v0为:
v0
L0 3600
f0
v j
2pj
返回 继续
❖ 风口的流速分布如图: (矩形送风管断面不变)
❖ *要实现均匀送风可采取的措施(如图)
1、设阻体; 2、改变断面积; 3、改变送风口断面积; 4、增大F,减小f0。
返回 继续
返回
计算例题
例6-5 如图所示通风管网。风管用钢板制作,输送含有 轻矿物粉尘的空气,气体温度为常温。除尘器阻力为 1200Pa,对该管网进行水力计算,并获得管网特性曲线。
返回
[解]:
1.对各管段进行编号,标出管段长度和各排风点的 排风量。
2.选定最不利环路,本系统选择1-3-5-除尘器-6风机-7为最不利环路。
Rm0
0
D
0v2
2
<流体输配管网>
返回
Rm值的修正:
(1)密度、运动粘度的修正
<流体输配管网>
Rm Rm0 0 0.91 0 0.1
(2)温度、大气压和热交换修正
Rm Rm0 Kt KB KH
式中
Kt
273
20
0.825
273 t
KB
B
0.9
101.3
2
KH
2 Tb T 1
管段1 水平风管,初定流速为14m/s。根据 Ql=
1500m3/h(0.42m3/s)、v1= 14m/s所选管径按通 风管道统一规格调整为:D1=200mm;实际流速v1
=13.4m/s;由图2-3-1查得,Rm1=12.5Pa/m 同理可查得管段3、5、6、7的管径及比摩阻,
具体结果见表2-3-5。 4.确定管段2、4的管径及单位长度摩擦力,见表 2-3-5。 5.计算各管段局部阻力 例如:
❖
Z=ξ·ρU2/2
Pa
❖ 其中ξ为局部阻力系数, 根据不同的构件查 表获得.
❖ 在通风除尘管网中, 连接部件很多, 因此局 部阻力较大, 为了减少系统运行的能耗, 在 设计管网系统时, 应尽可能降低管网的局部 阻力. 降低管网的局部阻力可采取以下措施:
❖ (1) 避免风管断面的突然变化;
第六章:通风管道的设计计算
Q2
P 538Q2
返回 继续
返回1 返回2
均匀送风管道设计
一、设计原理
静压产生的流速为: v j
2pj
空气在风管内的流速为: vD
2 pD
空气从孔口出流时的流速为:v v j
s in
如图所示:出流角为α:
tg v j
vD
Pj PD
继续
孔口出流风量:
L0 3600fv 3600f0 sinv
第六章 通风管道的设计计算
第六章:通风管道的设计计算
❖ 通风管道计算有两个基本的任务: ❖ 一是确定管道的阻力, 以确定通风除尘
系统所需的风机性能; ❖ 二是确定管道的尺寸(直径),管道设计
的合理与否直接影响系统的投资费用和 运行费用。
第六章:通风管道的设计计算
❖ 一. 管道压力计算 ❖ (一) 管道的阻力计算 ❖ 管道的阻力包括摩擦阻力和局部阻力. 摩擦
第六章:通风管道的设计计算
❖ (二) 管内压力分布