当前位置:文档之家› 电机调速控制技术发展现状及对比分析

电机调速控制技术发展现状及对比分析

电机调速控制技术发展现状及对比分析目录1不同电动机调速系统发展及对比 (2)1.1 异步电机驱动系统 (2)1.2无刷永磁同步电机驱动系统 (3)1.3 新一代电机驱动系统 (4)1.4 不同电机调速系统性能对比 (6)2 永磁同步电机控制策略的发展现状 (7)2.1 交流电机调速原理 (7)2.2 电机调速方式 (8)3 DTC技术的发展现状 (20)电机调速控制是电机技术、电力电子技术、传感器技术、微电子技术、自动控制技术等多学科的交叉应用技术。

这些学科的发展促进了运动控制技术的发展。

其构成结构如图1所示。

近十年来,主要发展交流异步电机和无刷永磁电机系统。

与原有的直流牵引电机系统相比,具有明显优势,其突出优点是体积小,质量轻(其比质量为0.5-1.0kg/Kw)、效率高、基本免维护、调速范围广。

其研究开发现状和发展趋势如下。

图1.电机运动控制构成要素结构图1不同电动机调速系统发展及对比1.1 异步电机驱动系统异步电机其特点是结构简单、坚固耐用、成本低廉、运行可靠,低转矩脉动,低噪声,不需要位置传感器,转速极限高。

异步电机矢量控制调速技术比较成熟,使得异步电机驱动系统具有明显的优势,因此被较早应用于电动汽车的驱动系统,目前仍然是电动汽车驱动系统的主流产品(尤其在美国),但已被其它新型无刷永磁牵引电机驱动系统逐步取代。

最大缺点是驱动电路复杂,成本高;相对永磁电机而言,异步电机效率和功率密度偏低。

1.2无刷永磁同步电机驱动系统无刷永磁同步电机可采用圆柱形径向磁场结构或盘式轴向磁场结构,由于具有较高的功率密度和效率以及宽广的调速范围,发展前景十分广阔,在电动车辆牵引电机中是强有力的竞争者,已在国内外多种电动车辆中获得应用。

1)、内置式永磁同步电机内置式永磁同步电机也称为混合式永磁磁阻电机。

该电机在永磁转矩的基础上迭加了磁阻转矩,磁阻转矩的存在有助于提高电机的过载能力和功率密度,而且易于弱磁调速,扩大恒功率范围运行。

内置式永磁同步电机驱动系统的设计理论正在不断完善和继续深入,该机结构灵活,设计自由度大,有望得到高性能,适合用作电动汽车高效、高密度、宽调速牵引驱动。

这些引起了各大汽车公司同行们的关注,特别是获得了日本汽车公司同行的青睐。

当前,美国汽车公司同行在新车型设计中主要采用内置式永磁同步电机。

2)、表面凸出式永磁同步电机表面凸出式永磁同步电机也称为永磁转矩电机,相对内置式永磁同步电机而言,其弱磁调速范围小,功率密度低。

该结构电机动态响应快,并可望得到低转矩脉动,适合用作汽车的电子伺服驱动,如汽车电子动力方向盘的伺服电机。

3)、无位置传感器永磁同步电机无位置传感器永磁同步电机驱动系统也是当前永磁同步电机驱动系统研究的一个热点,将成为永磁同步电机驱动系统的发展趋势之一,具有潜在的竞争优势。

1.3 新一代电机驱动系统从20世纪80年代开关磁阻电机驱动系统问世后,打破了传统的电机设计理论和正弦波电压源供电方式;并随着磁阻电机,永磁电机、电力电子技术和计算机技术的发展,交流电机驱动系统设计进入一个新的黄金时代;新的电机拓朴结构与控制方式层出不究,推出了新一代机电一体化电机驱动系统迅猛发展。

高密度、高效率、轻量化、低成本、宽调速牵引电机驱动系统已成为各国研究和开发的主要热点之一。

1)、SRD开关磁阻电机驱动系统SRD开关磁阻电机驱动系统的主要特点是电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。

这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。

SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;比同功率的感应电机体积也要大;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。

因此无传感器的SRD也是未来的发展趋势之一。

2)、永磁式开关磁阻电机永磁式开关磁阻电机也称为双凸极永磁电机,永磁式开关磁阻电机可采用圆柱形径向磁场结构、盘式轴向磁场结构和环形横向磁场结构。

该电机在磁阻转矩的基础上迭加了永磁转矩,永磁转矩的存在有助于提高电机的功率密度和减小转矩脉动,以利于它在电动车辆驱动系统中应用。

3)、转子磁极分割型混合励磁转子磁极分割型混合励磁结构同步电机这一概念一提出就引起国际电工界和各大汽车公司研发中心的极大关注。

转子磁极分割型混合励磁结构同步电机具有磁场控制能力,类似直流电机的低速助磁控制和高速弱磁控制,符合电动车辆牵引电机低速大力矩和恒功率宽调速的需求。

目前该电机的研究处于探索阶段,电机的机理和设计理论有待于进一步深入研究与完善,作为假选的电动车辆牵引电机具有较强的潜在的竞争优势。

此外,正在研发的热点课题还有:具有磁场控制能力的永磁同步电机驱动系统;车轮电机驱动系统;动力传动一体化部件(电机、减速齿轮、传动轴);双馈电异步电机驱动系统和双馈电永磁同步电机驱动系统。

1.4 不同电机调速系统性能对比现对这几类电动机所组成的驱动系统总体进行比较如表1所示。

表1.各电机调速系统性能比较通过上述分析以及翻阅大量资料显示:永磁电动机驱动系统以转速更高(已研制出转速达50000r/min、功率达1.5kW的无刷电动机)、效率更高、用磁更省、可以实现转子轻小紧凑、低成本化设计而成为研究与应用的热点。

但永磁电动机也有制成后难以调节磁场以控制功率因素和无功功率的缺点,这将成为今后的研究方向。

2 永磁同步电机控制策略的发展现状随着现代电力电子技术、交流变频调速技术的飞速发展和现代控制理论、高速微处理器的普及应用,交流调速电气传动系统的应用越来越广泛。

目前国际上先进的电动汽车驱动系统多采用矢量控制和直接转矩控制(DTC),特别是直接转矩控制技术以其简单高效吸引广大学者,因此在现代交流电气传动系统中占有越来越重要的地位。

2.1 交流电机调速原理过去交流电动调速不如直流电动机,而且调速方法比较复杂,但是近年来交流调速技术得到了迅速发展和广泛应用。

电动机转速有如下公式:160(1)(1)s f n n s s p=-=- (1) 由式(1)可是看出改变极对数p ,电源频率1f 及转差率s 都可以改变转速。

2.2 电机调速方式1)、变压变频(VVVF )调速自上个实际90年代以来,近代交流变频调速步入以变频调速为主的发展阶段,其间,由于各种新型电力电子期间的支持,使变频调速在低压(380V )中小容量(200KW 以下)方面取得了较大的发展。

通常,为了充分发挥电动机的性能,应保持定子磁链幅值为额定值。

由电机学的知识可知,异步电动机气隙磁通在定子绕组中的感应电动势有效值:4.44s s s s m E f N K φ= (2)s E ——气隙磁通在定子绕组中的感应电势;s f ——定子电流频率;m φ——每极气隙磁通;s N ——绕组匝数;s K ——系数;可见,只要控制s E 和s f ,即可控制磁通。

由定子电压平衡关系(式中只表示大小):1111()s U I r jX E =++(3)其中:1U ——电动机的端电压;1I ——定子电流;1r ——定子电阻;1X ——定子漏抗;当定子电压电流频率s f 教高时,感应电势s E 的有效值就较大,可以认为定子相电压有效值1s U E =。

由此,可以通过控制使/U f 恒定,使磁链恒定。

要恒/U f 控制,就必须使频率和输出电压同时改变,这就是要变压变频,即VVVF (Variable V oltage Variable Frequency )调速技术。

2)、SPWM 控制PWM (Pulse Width Modulation )控制的基本原理很早已经提出,它是基于采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

由此,可对一个系列脉冲的宽度进行调制,来等效获得所需要的波形。

1964年A.Schonung 和H.stemmmler 把这项技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面,但是受电力电子器件发展水平的制约,在20世纪80年代以前一直未能实现。

随着全控电力电子器件的出现和迅速发展,PWM控制技术才能真正得到应用。

目前,工程上采用的PWM控制技术主要是正弦波等效的PWM 波形,即SPWM,它是用脉冲宽度按照正弦规律变化而和正弦波等效的PWM波形,既SPWM波形控制逆变电路中开关器件的通段,通过改变调制波的频率和幅值则可调节逆变器电路输出电压的频率和幅值。

SPWM控制不仅可以实现变压变频,而且能削弱或消除有害的高次谐波。

SPWM方案主要有电压正弦PWM,电流正弦PWM;电压正弦PWM是通过调节逆变器输出脉冲占空比来调节输出平均电压,使其等效为正弦波形。

电流正弦PWM是为了改善逆变器输出电流波形提出的电流闭环控制方式,常用方法是电流滞环SPWM,就是以一个理想的电流正弦波形为标准,与实际电流波形作比较,实际电流围绕理想电流在滞环容差范围内作往复振动,使输出电流近似正弦波形。

早期通用变频器多为SPWM控制方式。

其优点是控制结构简单,成本较低,缺点是转矩响应慢,电机转矩效率利用不高,性能、稳定性差。

对于SPWM控制的三相PWM逆变器电路来讲,在调制度为最U(d U为直流侧电压,如图2),大值1时,输出相电压的基波幅值为/2d2d U,即直流电压利用率仅为0.866。

为了解决这个问题,人们想到了空间矢量PWM控制技术。

E图2.逆变器电路图3)、空间矢量PWM空间矢量PWM(SVPWM)控制技术,又称为磁通正弦PWM控制技术。

电压SPWM是从电源角度出发,分别追求电压和电流的正弦,而SVPWM则是从电机的角度出发,把电动机和逆变器看成为一个整体,着眼于如何使电动机获得幅值恒定的圆形磁场,因为异步电动机在理想状态下运行时的磁链轨迹即为圆形。

根据三相逆变器的原理,逆变器共有8种工作状态。

假设上臂桥导通为“1”,下臂桥导通为“0”表示,那么这8个状态就对应着8个数字量,将他们定义为8个基本电压矢量则有:0u(000)、1u(100)、u(110)、3u(010)、4u(011)、5u(001)、6u(101)、7u(111)2图3.电压空间矢量图异步电动机定子磁链与电压关系如式:()s s s s u i R dt ψ=-⎰其中:s ψ——定子磁链空间矢量s u 、s i 、s R ——定子电压空间矢量、电流空间食量、电阻可见,空间电压矢量的方向即定子磁链的旋转方向。

因此,利用上述的8个电压矢量的线性组合,就可以得到很多的与其相位不同的新的电压矢量,最终构成一幅等幅的不同相位的电压空间矢量图,叠加相成尽可能接近圆形旋转的电压空间矢量轨迹,进而使定子磁链旋转近似圆形。

相关主题