当前位置:文档之家› 基于FPGA的VGA显示 论文

基于FPGA的VGA显示 论文

VGA显示器控制电路论文前言VGA(视频图形阵列)作为一种标准的显示接口得到广泛的应用。

利用FPGA 芯片和EDA设计方法,可以因地制宜,根据用户的特定需要,设计出针对性强的VGA显示控制器,不仅能够大大的降低成本,还可以满足生产实践中不断变化的用户需要,产品升级换代方便迅速。

在本设计中采用Altera公司的EDA软件工具Quartus II,并以Cyclone II系列的FPGA的器件作为主实现硬件平台的设计。

一、FPGA的原理FPGA 是Filed Progranmmable Gate Array的缩写,即现场可编程逻辑阵列。

FPGA是在CPLD的基础上发展起来的新型高性能可编程逻辑器件它一般采用SRAM工艺,也有一些专用器件采用Flash工艺或反熔丝(Anti_Fuse)工艺等。

FPGA的集成度很高,其器件密度从数万系统门到数千万系统门不等,可以完成极其复杂的时序与组合逻辑电路功能,适用于高速、高密度的高端数字逻辑电路设计领域。

FPGA的基本组成部分有可编程输入/输出单元,基本可编程逻辑单元、嵌入式块RAM、丰富的布线资源、底层嵌入功能单元、内嵌专用硬核等。

FPGA 的主要器件供应商有Xilinx、 Altera、 Lattice、 Actel和 Atmel 等。

二、 VGA转换接口的简单描述本设计另外自制VGA接口电路。

VGA时序控制模块是整个显示控制器的关键部分,最终的输出信号行、场同步信号必须严格按照VGA时序标准产生相应的脉冲信号。

对于普通的VGA 显示器,其引出线的共含5个信号:G,R,B(三基色信号),HS(行同步信号),VS(场同步信号)。

在五个信号时序驱动时,VGA显示器要严格遵循“VGA工业标准”,即640Hz×480 H z×60Hz模式。

下图(1)为VGA显示控制器控制CRT显示器VGA(Video Graphic Array)接口,即视频图形阵列,也叫做D-Sub接口,是15针的梯形插头,分3排,每排5个,传输模拟信号。

VGA接口采用非对称分布的15针连接方式,其工作原理:是将显存内以数字格式存储的图像(帧)信号在RAMEAC里经过模拟调制成模拟高频信号,然后再输出到显示设备成像。

目前大多数计算机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数字方式生成的显示图像信息,被显卡中的数字/模拟转换器转变为R、G、B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。

对于模拟显示设备,如模拟CRT显示器,信号被直接送到相应的处理电路,驱动控制显像生成图像。

而对于LCD、DLP扥数字显示设备,显示设备中需配置相应的A/D (模拟/数字)转换器,将模拟信号转变为数字信号。

在经过D/A和A/D2次转换后,不可避免地造成了一些图像细节的损失。

VGA接口应用于CRT显示器无可厚非,但用于连接液晶之类的显示设备,则转换过程的图像损失会使显示效果略微下降。

VGA接口的引脚分配如下图(1)所示图(1)三、主要功能模块设计注:主要模块为三块,一个二分频模块,一个VGA时序和行点位置模块,一个图形生成模块,本来想利用老师提供的方案进行制作,但在按键去抖模块以及按键累计模块没有能完成,故更改方案,换用读取拨动开关的模式来选择模式显示。

1.1 VGA时序控制模块(vgaxm.v)功能:根据VGA显示器的工作原理,提供同步信号(H_SYNC和V_SYNC)及像素位置信息。

设计思路:根据VGA显示器的工作原理,以垂直同步信号的出现时刻作为时间的起点(原点),根据时序图算出每一个关键时间点所需的计数器最大值,据此输出H_SYNC和V_SYNC,在此基础上对扫描的行数及像素点数进行计数,从而输出像素位置信息。

1.1.1VGA的时序详细讲解对于VGA显示器,每个像素点的输出频率为25.175MHZ,本实验采用50MHz的时钟信号,经过模块divider(二分频模块)的分频得到25MHz的时钟输入信号。

依据VGA时序标准,行同步信号HS,行周期为32.2us,也就是H_sync(行)的周期;场同步信号VS,场周期为16.89ms,也就是V_sync(一帧)的周期。

刷新1个像素所需时间Tpixel = 1/ fclk =40ns;从(b)水平刷新循环中,可以知道刷新一行所需时间公式:Trow = B+C+D+E=Tpixel ⨯ 640 + guard bands = 25.6μs + B + C +E = 32.2μs;引入h_count[9..0]:用于Trow(25MHz)的定时计数,计数清零时由时序可得下面计算式子:h_countend:同时可以从该时序图确定p_begin_time和p_end_time的像素点pixel开始计数以及清零计数的时间,计算式子如下:p_begin_time :p_end_time :还能得出行扫描h_sync在h_count从0~805计数期间,从第几计数开始为电平变化。

图中,B=3.77us就是说在h_count计数起到3.77us到来之间行信号h_sync 保持低电平,在3.77us到32.2us之间为高电平,刚好为一个行信号周期。

以下是计算式子(hsync_end代表h_sync的低电平截止时间范围):hsync_end:程序简单描述如下:h_count计数:always @( posedge clk) //25MHZ// 在垂直刷新循环内,当h_count计到规定的最大值805时,则清零;否则加1计数h_sync的电平变化:assign h_sync_pulse_w = (h_count < hsync_end); //从h_count计数到94(3.77us)为1,95~805为0 在v_sync负脉冲宽度内,v_sync_pulse_w为高电平assign h_sync=~h_sync_pulse_w;(a)垂直刷新循环从(a)垂直刷新循环,可以知道刷新完480行,并完成一帧所需时间Tscreen =P+Q+R+S= Trow ⨯ 480 + guard bands = 15.456ms+ P + Q + S = 16. 89ms引入v_count[18..0] :用于Tscreen的定时计数,每当h_count计数满805,v_count计数加1一次;计数清零时由时序可得下面计算式子(v_countend为v_count计数清零值):v_countend:同时可以从该时序图确定h_begin_time和h_end_time的行计数line开始计数以及清零计数的时间,计算式子如下:h_begin_time :h_end_time :还能得出场扫描v_sync在v_count从0~525计数期间,从第几计数开始为电平变化。

图中,P=64us就是说在v_count计数起到64us到来之间场信号v_sync 保持低电平,在64us到16. 89ms之间为高电平,刚好为一个场信号周期(一帧)。

以下是计算式子(vsync_end代表v_sync的低电平截止时间范围):vsync_end:程序简单描述如下:v_count计数:always @ (posedge clk )// 当垂直刷新循环结束(满480)时v_count清零;否则当h_count计到规定的最大值(805)时加1计数;v_sync的电平变化:assign v_sync_pulse_w = (v_count < vsync_end); //从v_count从0计数到2(64us)为1 3~525为0 在h_sync负脉冲宽度内,h_sync_pulse_w为高电平assign v_sync=~v_sync_pulse_w;1.1.2提供行列以及格线计数值行或列计数:line 和pixel;格线计数器:line_cnt,pixel_cnt,strip_cnt(1)line[8..0]:用于对行数(1~480行)计数,其clk等于水平同步信号h_sync 的下降沿;(2)pixel [9..0] :用于对每行的像素点数(1~640个点)计数,其clk等于输入时钟fclk25M。

/* 3. line[8..0]对像素所处行计数*/always @ (negedge h_sync )//h_sync的下降沿触发line计数。

//当h_begin_time ≦v_count≦h_end_time,且当line≦480时,则line加1计数;//否则line清零。

/* 4. pixel[9..0]对像素所处列计数*/always @ (posedge clk )/*当1≦line≦480(必须有此条件,否则pixel在h_sync来后B+C时间之后即开始加1计数,而此时line=0),且p_begin_time≦h_count≦p_end_time,且pixel ≦640时,则pixel加1计数;*///否则pixel清零。

(3)output[4:0] line_cnt; //用于棋盘格1的水平格线计数32进制,32.2uss计数一次(4)output[5:0] pixel_cnt; //用于棋盘格1的垂直格线计数64进制40ns计数一次(5)output[5:0] strip_cnt; //用于横彩条2的水平格线计数64个6432.2uss计数一次2.1生成图形子模块注:RGB[2..0]:颜色信号,R——红色信号;G——绿色信号;B——蓝色信号。

其对应颜色关系如下表所示。

功能:根据时序控制子模块输出的像素位置信息,在不同的显示模式下,输出不同的颜色信号。

设计思路:采用case语句,来确定不同的显示模式;在每种显示模式下,采用if-else 语句,根据像素所处的位置(即line和pixel的范围),来确定输出不同的颜色信号。

对棋盘格1、横彩条2的格线的判断不用枚举的方法,而是根据vgacore2.v 输出的格线计数器line_cnt、pixel_cnt和strip_cnt的大小,用if-else语句简单地实现。

本模块主要的图形生成程序简述如下:/* 2. 根据cnt值产生不同的显示图形*/always @ (posedge clk )beginif( line>9'd0 & line<=9'd480 & pixel>9'd0 & pixel<=10'd640) //若在有begin 效区域内case(cnt)0:begin/*(1)模式1:4大图形块*/1:begin/*(2)模式2:竖彩条*/2:begin/*(3)模式3:横彩条*/3:begin/*(4)模式4:棋盘格1 16*16 */4:begin/*(5)模式5:小横彩条*/5:begin/*(6)模式6:棋盘格2 30*40 */endcaseendelse rgb=3‘b000;//超出有效区域,则为黑色end2.1.1VGA竖彩条发生和横彩条发生竖彩条发横模块根据像素点计数器的h_count的计数值来产生彩条,其流程图如(a)所示。

相关主题