第一章铸造1. 铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状 和尺寸的毛坯或零件的方法。
2. 充型:溶化合金填充铸型的过程。
3. 充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。
4. 充型能力的影响因素:金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。
5. 影响合金流动性的因素:(1 )合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。
(2 )化学成份:纯金属和共晶成分的合金流动性最好;(3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。
6. 金属的凝固方式:1237收缩 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。
8. 合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。
液态收缩和凝固收缩,通常以体积收缩率表示。
液态收缩和凝固收缩是铸件产生缩孔、 缩松缺陷的基本原因。
合金的固态收缩,通常用线收缩率来表示。
固态收缩是铸件产生内应力、裂纹和变形 等缺陷的主要原因。
9. 影响收缩的因素(1) 化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。
(2) 浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。
(3) 铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结 果对铸件收缩产生阻碍。
(4) 铸型和型芯对铸件的收缩也产生机械阻力10. 缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为 缩孔和缩松。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的 条件下。
缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状 晶体分隔开的液体区难以得到补缩所致。
合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。
缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。
11•缩孔、缩松的防止方法:课件版本:冒口、冷铁和补贴的综合运用是消除缩孔、缩松的有效措施。
(1) 使缩松转化为缩孔的方法 :① 尽量选择凝固区域较窄的合金,使合金倾向于逐层凝固;② 对凝固区域较宽的合金,可采用增大凝固的温度梯度办法。
逐层凝固方式 体积凝固方式或称“糊状凝固方式”。
中间凝固方式 :液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。
(2)防止缩孔的方法要使铸件在凝固过程中建立良好的补缩条件,可采用定向凝固原则”冷铁:为了实现定向凝固,在安放冒口的同时,在铸件上某些厚大部位增设的金属材料书版本:(1)按照定向凝固原则进行凝固(2)合理地确定内浇道位置及浇注工艺(3 )合理地应用冒口,冷铁和补贴等工艺措施12.定向凝固原则:通过各种工艺措施,使铸件上从远离冒口的部位到冒口部位之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部分向冒口方向的定向凝固。
13•铸造应力分为热应力和收缩应力。
它是铸件产生变形和裂纹的基本原因。
热应力:铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。
收缩应力:铸件在固态收缩时,因受铸型,型芯,浇冒口等外力的阻碍而产生的应力。
14•根据产生温度的不同,裂纹可分为热裂和冷裂两种。
1•热裂一般是在凝固末期,高温下的金属强度很低,如果金属的线收缩受到铸型或型芯的阻碍,机械应力超过该温度下金属的强度,便产生热裂。
特征:热裂纹尺寸较短、缝隙较宽、形状曲折、缝内呈严重的氧化色。
2•冷裂低温形成的裂纹为冷裂一一是铸件冷却到低温处于弹性状态时所产生的热应力和收缩应力总和,如果大于该温度下合金的强度,则产生冷裂。
特征:表面光滑,具有金属光泽或呈微氧化色,贯穿整个晶粒,常呈圆滑曲线或直线状。
15•铸件中气孔按产生的原因和气体来源不同,大致分为三类:侵入气孔,析出气孔,反应气孔。
16•熔模铸造(失蜡铸造):用易熔材料如蜡料制成模样,在模样上包覆若干层耐火涂料,制成形壳,解出模样后经高温焙烧即可饶注的铸造方法称熔模铸造。
熔模铸造的工艺过程1.制造蜡模7 2 .制造型壳7 3 .熔化蜡模(脱蜡)7 4 .型壳的焙烧7 5 .浇注7 6 .脱壳和清理17"金属型铸造:将液体金属在重力作用下浇入金属铸型而获得铸件的方法。
铸型用金属制成,可以反复使用几百次到几千次。
故称为“永久型铸型”。
18"压力铸造:熔融金属在高压下高速充型,并在压力下凝固的铸造方法称为压力铸造,简称压铸。
19•离心铸造:是将熔融金属浇入绕水平、倾斜或立轴旋转的铸型,在离心力作用下,凝固成形的铸件的轴线与旋转铸型轴线重合的铸造方法。
20^浇注位置的选择原则:①铸件的重要加工面应朝下或位于侧面②铸件的大平面应朝下③面积较大的薄壁部分置于铸型下部或垂直,倾斜位置④ 对于容易产生缩孔的铸件,应将厚大部分放在分型面附近的上部或侧面⑤ 应尽量减少型芯的数量,且便于安放、固定和排气21. 铸型分型面的选择原则:1. 便于起模,使造型工艺简化① 为便于起模,分型面应选在最大截面处② 避免不必要的活块和型芯③ 尽量使分型面平直④ 尽量减少分型面2. 尽量将铸件重要加工面或大部分加工面,加工基准面放在同一个砂箱中3. 使型腔和主要芯位于下箱,便于下芯,合型和检查型腔尺寸22. 起模斜度: 为了使模样(或型芯)易于从砂型(或芯盒)中取出,凡垂直于分型面的 立壁,制造模样时必须留出一定的倾斜度,此倾斜度称为起模斜度铸造工艺设计和结构工艺性看书 第2章锻造1. 锻压:在外力作用下金属材料通过塑性变形,获得具有一定形状、尺寸和力学性能的零件 或毛坯的加工方法。
它又称为塑性成形。
它是锻造和冲压成形的总称。
2. 金属塑性成形在工业生产中称为压力加工,分为:自由锻、模锻、板料冲压、挤压、拉 拔、轧制等。
3压力加工的特点:(1)(2)(3)(4) 缺点:不能加工脆性材料(如铸铁)和形状特别复杂(特别是内腔形状复杂)或体积特别 大的零件或毛坯。
4. 锻造:是在加压设备及工(模)具作用下,使坯料、铸锭产生局部或全部的塑性变形, 以获得一定几何尺寸、形状和质量的锻件的加工方法。
由于金属塑性和变形抗力方面的要求,锻造通常是在高温(再结晶温度以上)下成形的, 因此也称为金属热变形或热锻。
5. 冲压:是板料在冲压设备及模具作用下,通过塑性变形产生分离或成形而获得制件的加 工方法。
主要用于加工板料。
冲压通常是在再结晶温度以下完成变形的,因而也称为冷冲压。
6. 冲压基本工序:分离工序:冲裁(落了和冲孔)剪切,切边,切口,剖切等; 成形(变形)工序:弯曲,拉深,翻边,成形,旋压等。
7. 塑性:是指金属材料在外力作用下能稳定地改变自己的形状和尺寸而个质点间的联系不 被破坏的性能。
8. 变形抗力:塑性加工时,作用在工具表面单位面积上变形力的大小称为变形抗力。
塑性反映材料塑性变形的能力,变形抗力表示塑性变形的难易程度。
9. 可锻性:金属材料经受压力加工的难易程度。
它是用金属材料的塑性与变形抗力来衡量 的。
塑性愈大与变形抗力愈小,材料的可锻性愈好。
10. 可锻性的影响因素:(1 )化学成分 (2)内部组织(3)变形温度 (4)变形速度 (5)应力状态改善金属的组织、提高力学性能 材料的利用率高 较高的生产率 毛坯或零件的精度较高11.过热:加热温度过高,会使晶粒急剧长大,导致金属塑性减小,塑性成形性能下降,这种现象称为“过热”。
12.过烧:如果加热温度接近熔点,会使晶界氧化甚至熔化,导致金属的塑性变形能力完全消失,这种现象称为“过烧”,坯料如果过烧将报废。
13.自由锻:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。
14自由锻分类:手工锻造和机器锻造两种。
15.自由锻工序:基本工序、辅助工序和修整工序。
基本工序:镦粗、拔长和冲孔。
16模锻:模型锻造是在锻压机器动力作用下,使坯料在锻模模膛内被迫塑性流成形,从而获得与模膛形状相符的锻件,简称模锻。
与自由锻相比,模锻具有如下优点:生产效率较高。
模锻时,金属的变形在模膛内进行,故能较快获得所需形状。
能锻造形状复杂的锻件,并可使金属流线分布更为合理,提高零件的使用寿命。
模锻件的尺寸较精确,表面质量较好,加工余量较小。
节省金属材料,减少切削加工工作量。
在批量足够的条件下,能降低零件成本。
模锻操作简单,劳动强度低。
(1)(2)(3)(4)(5)模锻适合于小型锻件的大批大量生产,不适合单件小批量生产以及中、大型锻件的生产。
17.胎模锻:是在自由锻设备上采用不与上、下砧相接的活动模具成型的方法称为胎模锻。
它是介于自由锻与模锻之间的锻造工艺方法。
胎模锻与自由锻相比,可获得形状较复杂、尺寸较为精确的锻件,节省了金属,提高了生产率。
与模锻相比,可利用自由锻设备组织各类锻件生产,胎模制造较简便。
但胎模锻件的尺寸精度低于锤上模锻;另外,劳动生产率、模具寿命等方面均低于模锻。
胎模锻适用于中小批生产,它在没有模锻设备的工厂应用较为普遍。
18.胎模按照结构型式不同可分为:(1)摔模(2)拼分套模(3)切边模(4)弯曲模19.冲裁的分离过程三个阶段:1)弹性变形阶段2)塑性变形阶段3)断裂分离阶段锻造温度设计,看书P79第三章焊接1.焊接:通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子(分子)间结合的一种加工方法。
2.熔焊(熔化焊):利用电能、化学能等热源,将待焊处局部母材加热至熔化(不加压)冷却结晶后熔为一体形成焊缝的方法。
属于液相焊接。
3.压焊:焊接过程需对焊件加压(加热或不加热)以完成焊接的方法。
加压使焊件接头处发生塑变,两界面接近至原子间可作用到的距离,达到原子间接合,形成两焊件连成一体的接头。
加热为了焊件接头更易产生塑变。
特适于异种材料的连接材料连接。
4.钎焊:采用熔点低于被焊金属的钎料(填充金属)熔化之后,填充接头间隙,并与被焊金属相互扩散实现连接。
钎焊过程中被焊工件不熔化,且一般没有塑性变形。
5.焊接电弧:是由焊接电源供给的,是具有一定电压的两电极间或电极与焊件间,在气体介质产生强烈而持久的放电现象。
电弧实质是一种气体放电。
6. 电弧由阴极区、阳极区和弧柱区三部分组成:1) 阴极区:电子发射区,热量约占 36%,平均温度2400K ;2) 阳极区:受电子轰击区域,热量约占43%,平均温度2600K ;3) 弧柱区:阴、阳两极间区域,几乎等于电弧长度,热量 21%,弧柱中心温度可达 6000~8000K 。