当前位置:文档之家› 永磁同步电机简介.

永磁同步电机简介.


在同步电机运行过程中,电机微分方程有多种 形式。在A、B、C坐标系下,将定子三相绕组中A 相绕组轴线作为空间坐标系的参考轴线as,在确 定好磁链和电流正方向后,可以得到永磁同步电 机在 A、B、C坐标系下的定子电压方程:
dis d d u s Ris L s Ris dt dt dt
• 转速与电网频率关系
60 f n p
• f—定子侧旋转磁场的交流电流频率 • P—电机极对数
只要电网频率不变,则稳定运行时的同 步电机的转速恒为常值而与负载无关。 从原理上看,同步电机既可以作为发电 机,也可以作为电动机或补偿机。现代水 电、火电及核电中的发电机几乎都是用的 同步发电机,在工矿企业和电力系统中, 同步电动机和补偿机用的也不少。
定子中通三相对称绕组,转子有直流电源供电, 运行过程如下: (1)主磁场的建立:励磁绕组通以直流励磁电 流,建立极性相间的励磁磁场,即建立起主磁场。 (2)载流导体:三相对称的电枢绕组充当功率 绕组,成为感应电势或者感应电流的载体。 (3)切割运动:原动机拖动转子旋转(给电机 输入机械能),极性相间的励磁磁场随轴一起旋 转并顺次切割定子各相绕组(相当于绕组的导体 反向切割励磁磁场)。
内埋式转子结构,这类结构的永磁体位于转子 内部,每个永磁体都被铁芯所包容。内埋式转子 结构在电磁性能上也属于凸极式转子结构。从图 中可以看出,d轴主磁通穿过两个永磁体,相当于 在d轴磁通路径上存在两个额外的大气隙,而q轴 主磁通仅穿过铁芯和气隙;因空气的相对磁导率 是1,所以q轴同步电感要明显大于d轴同步电感。 通常用凸极率(p=Lq/Ld)来表示永磁同步电动机的凸 极性。在相同条件下,面装式转子结构的凸极性 最小,内埋式转子结构的凸极性最大。凸极性不 但可以用来提高永磁同步电动机功率密度和效率, 还可以用来实现无位置传感器的控制。
永磁同步电机数学模型
在永磁同步电机的定子上装有A、B、C三 相对称绕组,转子上装有永久磁钢(有些 电机转子上还装有阻尼绕组),定子和转 子通过气隙磁场耦合。由于电机定子与转 子之间存在相对运动,定转子之间的位置 关系是随时间变化的,因此,定转子个参 量的关系非常复杂,无法准确的分析同步 电机定转子各参量的变化规律,给永磁同 步电机的分析和控制带来诸多困难。
Tm K I m
(1)相电流切换时产生转矩 波动 (2)电流控制有延迟使转矩 降落 (3)只需要简单的磁极位置 传感器 (4)电流控制简单
运行特点
从结构来分:面装式、插入式、内埋式
面装式转子结构,通常永磁体呈瓦片形, 并安装在转子铁芯外表面上。这种转子结 构具有结构、工艺简单,成本低和转动惯 量小等优点,多用于中小功率伺服电机中。
永磁同步电机简介
同步电机
同步电动机属于交流电机,定子绕组与 异步电动机相同。它的转子旋转速度与定 子绕组所产生的旋转磁场的速度是一样的, 所以称为同步电动机。正由于这样,同步 电动机的电流在相位上是超前于电压的, 即同步电动机是一个容性负载。为此,在 很多时候,同步电动机是用以改进供电系 统的功率因数的。
永磁电机的分类
永磁无刷直流电机(BDCM)——以方 波或梯形波供电。 永磁同步电机(PMSM)——以正弦波 或者方波供电。
正弦波和方波永磁电机对比
对比项目 正弦波永磁同步电机 方波永磁同步电机
电动机没相励磁磁通分 布 电动机没相电流波形
Φ
Φ
Im
Im
电磁转矩
Tm
Tm
Tm K I m
(1)转矩脉动小 (2)可用相位补偿电 流控制器的滞后 (3)需磁极传感器 (4)电流控制复杂
(4)交变电势的产生:由于电枢绕组与 主磁场之间的相对切割运动,电枢绕组中 将会感应出大小和方向按周期性变化的三 相对称交变电势。通过引出线,即可提供 交流电源。
运行方式
同步电机的主要运行方式有三种,即作 为发电机、电动机和补偿机运行。作为发 电机运行是同步电机最主要的运行方式, 作为电动机运行是同步电机的另一种重要 的运行方式。同步电机还可以接于电网作 为同步补偿机。这时电机不带任何机械负 载,靠调节转子中的励磁电流向电网发出 所需的感性或者容性无功功率,以达到改 善电网功率因数或者调节电网电压的目的。
A L Ai A M ABi B +M ACi C + f cos 2 ) B M BA i A LBi B +M BCiC + f cos( 3 2 C M CA i A M CBi B +LCiC + f cos( ) 3
插入式转子结构,是将永磁体嵌于转子表面下, 而永磁体的宽度小于一个极距。若永磁体都采用 稀土永磁材料,由于永磁材料的相对磁导率接近1, 所以面装式转子结构的永磁同步电动机在电磁性 能上属于隐极式电机,其直、交轴(d、q轴)同步电 感基本相同,转子磁路对称。而插入式转子结构 因相邻的永磁磁极之间是磁导率很大的铁磁材料, 故插入式转子结构的永磁同步电动机在电磁性能 上属于凸极式电机,其q轴同步电感要大于d轴同 步电感。这种因转子磁路的不对称性所产生磁阻 转矩可以被利用来提高电动机的功率密度,改善 动态性能。
为了简化对永磁同步电机的分析,建立实 现可行的同步电机数学模型,做如下假设: (1)忽略磁路饱和、磁滞和涡流影响,视 电机磁路是线性的,可以应用叠加原理对 电机回路各电磁参数进行分析。 (2)电机定子绕组三相对称,各绕组轴线 在空间上相差120度电角度。
(3)转子上没有阻尼绕组,永磁铁没有阻尼 作用。 (4)电机定子的电势按正弦规律变化,定子 电流在气隙中只产生正弦分布磁势,忽略 磁场场路中的高次谐波磁势。 按照以上条件对永磁同步电机进行理论分 析时,其所得到的结果与实际情况非常接 近,误差在工程允许内。
(1)
A、B、C三相坐标系中同步电机数学模型
bs is B S A' C cs B' C' N ω A θ as ψfBiblioteka 图1 PMSM电机物理模型
在图中,as、bs、cs为电机三相定子绕组的轴线, θ为转子d轴轴线与A相绕组轴线的夹角,ψ f为转子 永磁铁产生的过定子磁链,is为电机定子三相电流 的综合矢量。 在A、B、C三相坐标系下的磁链方程为:
相关主题