当前位置:文档之家› 数学史论文

数学史论文

艾滋病传播的微分方程模型【摘要】微积分的创立,被誉为是“人类精神的最高胜利”,是由常量数学向变量数学转变的一件具有划时代意义的大事。

16世纪后半叶,牛顿和莱布尼茨在许多数学家所做的大量准备工作的基础上,各自独立地创立了微积分。

【关键词】牛顿莱布尼茨微积分引言:(1)古希腊时期微积分的萌芽和中国古代极限思想,(2)16世纪中叶开始,微积分进入酝酿阶段,(3)牛顿和莱布尼茨在17世纪下半叶创立微积分学,(4)微积分诞生以后发生过的争论。

微积分的萌芽阶段无穷作为一个极富迷人魅力的词汇,长期以来就深深激动着人们的心灵。

彻底弄清这一概念的实质成为维护人类智力尊严的一种需要。

而数学是“研究无限的学科”,因此数学就责无旁贷地担当起征服无穷的重任。

我们在本文中将简要介绍一下数学中无穷思想发展的历程光辉的起点:数学无穷发展的萌芽时期早在远古时代,无限的概念就比其它任何概念都激动着人们的感情,而且远在两千年以前,人们就已经产生了对数学无穷的萌芽认识。

在历史上微积分的萌芽出现得比较早,中国战国时代的《庄子·天下篇》中的“一尺之棰,日取其半,万事不竭”,就蕴含了无穷小的思想。

古希腊物理学、数学两栖科学大师阿基米德在公元前三世纪依据前人的穷竭法,用“切片”方法并借助杠杆原理建立了球体的体积公式,这其中就包含了定积分的思想。

但在当时,微积分并没有受到人们的广泛关注。

直到公元17世纪,在欧洲资本主义开始萌芽、科学和生产技术开始发展的情况下,航海、天文、力学、军事、生产等科学技术给数学提出了一系列迫切需要解决的问题。

微积分的酝酿阶段微积分的酝酿是在17世纪上半叶到世纪末这半个世纪。

让我们先回顾一下这半个世纪自然科学、天文学和力学领域所发生的重大事件:1608年伽利略(Galileo)第一架望远镜的制成,不仅引起了人们对天文学研究的高潮,而且还推动了光学的研究。

开普勒(J.Kepler)通过观测归纳出三条行星运动定理。

其中,开普勒与旋转体体积,卡瓦列里不可分量原理,笛卡尔圆法,费马的极大极小值求法,巴萨的微分三角形,沃尔斯无穷算术,这些17世纪一系列前驱性工作为微积分的诞生酝酿了基础。

牛顿—莱布尼茨与微积分1.牛顿与其“流数术”牛顿(1642~1727),英国数学家、物理学家、天文学家和自然哲学家。

牛顿在数学上最卓越的贡献是创建微积分。

在17世纪60年代的短短几年里牛顿成功地将他17世纪的前辈们发展出的关于切线和面积的所有材料统一并推广成为我们今天的微积分教科书中展示的神奇的解决问题的工具。

就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。

■ 流数术的初建牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。

就在此时,牛顿首创了小ο记号表示x 的无限小且最终趋于零的增量。

1665年至1667年,牛顿继续探讨微积分并取得了突破性进展。

他将1665年发明的“正流数术”(微分法)和1666年建立的“反流数术”(积分法)整理成一篇总结性论文,此文以《流数简论》著称,是历史上第一篇系统的微积分文献。

《流数简论》反映了牛顿微积分的运动学背景,该文事实上以速度形式引进了“流数”(即微商)概念。

文中提出了微积分的基本问题:①设有两个或更多个物体A ,B ,C ,……在同一时刻内描画线段,,,z y x ……。

已知表示这些线段关系的方程,求它们的速度,,,r q p ……的关系。

②已知表示线段x 和运动速度p 、q 之比的关系方程式,求另一线段y 。

对于这两个问题,牛顿都给出了解答,而对于问题②的解法实际上是问题①的解的逆运算。

特别重要的是,《流数简论》中讨论了如何借助于这种逆运算来求面积,从而建立了所谓“微积分基本定理”。

当然,《流数简论》中对微积分基本定理的论述还不能算了现代意义下的严格证明。

牛顿在后来的著作中对微积分基本定理又给出了不依赖于运动学的较为清楚的证明。

■ 流数术的发展《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的。

从1667年到1693年大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后写成了三篇微积分论文,分别是:《运用无限多项方程的分析》,简称《分析学》,完成于1669年;《流数法与无穷级数》,简称《流数法》,完成于1671年;《曲线求积术》,简称《求积术》,完成于1691年。

这三篇论文反映了牛顿微积分学说的发展过程,并且可以看到牛顿对于微积分先后给出了不同的解释。

第一篇论文《分析学》是牛顿为了维护自己在无穷级数方面的优先权而作。

《分析学》利用无穷级数来计算流数、积分以及解方程等,因此《分析学》体现了牛顿的微积分与无穷级数紧密结合的特点。

关于微积分,《分析学》一开始就叙述了计算曲线)(x f y =下面积的法则。

牛顿接着给出了另一条法则:若y 值是若干项之和,那么所求面积就是由其中每一项得到的面积之和,这相当于逐项积分定理。

第二篇论文《流数法》可以看作是1666年《流数简论》的直接发展。

《流数法》开始于他在给莱布尼茨第二封信中仅用密码作过暗示的问题,也是他认为是微积分两个基本方面的问题:“连续地给出距离的长度(就是说,在任何时间的),求任何指定时间的运动的速度。

连续地给出运动的速度,求在任何指定时间走过的距离。

”对牛顿说来,微积分的基本思想是同运动有关的。

牛顿的《流数法》中还有许多其它内容,著作实际上包含了任何现代微积分教程最初几章里所有重要的思想,但缺少的一个思想是极限的思想。

第三篇论文《曲线求积术》是牛顿最成熟的微积分著述。

牛顿在其中改变了对无限小量的依赖并批评自己过去那种随意忽略无限小瞬ο的做法:“在数学中,最微小的误差也不能忽略。

在此基础上定义了流数概念之后,牛顿写道:“流数之比非常接近于在相等但却很小的时间间隔内生成的流量的增量比。

确切地说,它们构成增量的最初比”。

2.莱布尼茨与其微积分莱布尼茨(1646~1716),德国数学家、哲学家。

莱布尼茨在数学上的成绩是多方面的,创建微积分是他最重要的贡献。

他与牛顿并称为微积分学的创始人。

他研究了巴罗的著作,理解到微分和积分是互逆的运算,在笔记中他断言:作为dx,,并指出d意味着差,用dx 求和过程的积分是微分的逆。

他创造了微分符号dy表示两个相邻x的差,用dy表示相邻y值的差,即曲线上相邻两点的纵坐标之差,⎰”并明确指出“⎰”意并认为dx和dy可以任意的小。

他还给出积分符号“味着和。

现在使用的“微分学”、“积分学”、“坐标”等名称也是他创造的。

由于他的影响,表示相等的记号“=”和表示乘法的记号“∙”才得以通用。

■微积分的建立早在1666年,莱布尼茨在《组合艺术》中讨论过数列问题并得到许多重要结论。

大约从1672年开始,莱布尼茨将他对数列研究的结果与微积分运算联系起来。

借助于笛卡尔解析几何,莱布尼茨可以把曲线的纵坐标用数值表示出来,并想象一个由无穷多个纵坐标值y组成的序列,以及对应的x值的序列,而x被看作是确定纵坐标序列的次序。

同时考虑任意两相继的y值之差的序列。

莱布尼茨后来在致洛必达的一封信中总结说:这使他发现“求切线不过是求差,求积不过是求和”!1677年,莱布尼茨在一篇手稿中明确陈述了微积分基本定理。

■微积分的发表1684年莱布尼茨发表了他的第一篇微分学论文《一种求极大与极小值和求切线的新方法》(简称《新方法》),刊登在《教师学报》上,这也是数学史上第一篇正式发表的微积分文献。

该文是莱布尼茨对自己1673年以来微分学研究的dx,。

1686年,莱布尼茨又发表了概括,其中定义了微分并广泛彩了微分记号dy他的第一篇积分学论文《深奥的几何与不可分量及无限的分析》。

这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系。

牛顿与莱布尼茨牛顿和莱布尼茨都是时代的巨人,在创立微积分方面,莱布尼茨与牛顿功绩相当。

但是17世纪末,在欧洲却爆发了一场激烈的旷日持久的微积分发明权之争。

就发明时间而言,牛顿早于莱布尼茨;就发表时间而言,莱布尼茨则先于牛顿。

通过争论和调查,人们公认为:牛顿和莱布尼茨都是微积分的发明人,他们的微积分各有特色。

牛顿和莱布尼茨从不同的角度工作,各自独立地发现微积分基本定理,并建立了一套有效的微分和积分算法,他们都把微积分从几何形式中解脱出来,采用了代数方法和记号,从面扩展了它的应用范围,都把面积、体积及以前作为和来处理的问题归结到积分(反微分)。

这样,速度、切线、极值、求和的问题全都归结为微分和积分。

但是他们的微积分研究工作各有特色,主要表现在以下三个方面:历史不负其苦心,由于莱布尼茨的微分符号和积分符号都简明易懂、方便好用,所以一直被人们沿用至今。

这场旷日持久、影响深远的微积分发明权之争早已烟消云散,但新的科学发现优先权之争却此起彼伏,真正为探索自然奥秘,谋求人类共同的利益而奋斗和努力。

微积分对数学史的作用微积分它是一种数学思想,…无限细分‟就是微分,…无限求和‟就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。

如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。

学习数学史的感想法国伟大的数学家亨利·庞加莱曾说:“如果我们想要预测数学的未来,那么适当的途径是研究这们学科的历史和现状”.在教学中,尽管我们反复强调学习知识的意义,但是如果没有适当的历史叙述,那么这些知识的来龙去脉对于学生来说仍然是感到费解的.对于学习数学的学生来说,一些课程所介绍的通常是一些似乎没有什么关系的数学片段,而历史可以提供整个课程的概貌,不仅使课程的内容互相联系,而且使它们跟数学思想的主干也联系起来.因此数学教学中,应在传授数学知识的同时,把一些重要的数学史料介绍给学生,使学生掌握数学发展的基本规律,了解数学的基本思想,同时,学生还可以看到数学发展的曲折,数学家们所经历的艰苦漫长的道路.数学史中那些能够深深感动学生、惊心动魄、引人入胜的例子不胜枚举.从而调动学生学习数学的积极性和创造性,使学生不仅获得真知灼见,还将获得顽强学习的勇气,进而塑造完善的人格.参考文献:[1]张荣芹.简明数学史[M],哈尔滨出版社,2000.[2]蔡小华.阿基米德与牛顿、莱布尼茨创立的微积分[J],漫话数学,2007.[3]孙小礼.莱布尼茨与微积分发明权之争[J],自然辩证法研究,2006.[4]李涛.漫谈微积分的产生与发展[J],数学史话,2006.[5]李经文.微分学与积分学的发展及其历史评价[J],邵阳师范高等专科学校学报,2002.[6]程志波、徐飞.科学发现优先权之争的博弈分析[J],自然辩证法研究,2008.[7]左林.牛顿与莱布尼茨创立微积分之解析[J],连云港师范高等专科学校学报,20004.[8]李文林等.数学史通论[M],高等教育出版社,2006.[9]李文林.数学史概论[M],高等教育出版社,2006.。

相关主题