当前位置:文档之家› 氢能源的利用

氢能源的利用

氢能源的利用
1.氢能在航空器上的应用
目前,各类航空器均采用专用航空燃料。

航空燃料为石油制品,燃烧尾气中含有氮氧化物,而目前各类民航飞机及部分军用飞机之飞行高度均在大气平流层,因此,航空器尾气在光化学反应下分解臭氧,成为大气层臭氧空洞的重要污染源之一。

二十世纪以来,随着人类航天事业的发展,氢能已经为人类航天所用。

氢气作为自然界分子量最小的物质,在质量上拥有其他物质不可比拟的特性。

科学家们使用液氢液氧作为航天器推进器燃料,这一技术已经不断成熟。

●开发小型液氢液氧动力推进系统
借鉴航天工业应用液氢燃料的成熟经验,可开发小型民用及军用航空液氢/液氧动力推进系统。

其反推喷气式工作原理,有利于航空器飞行速度的进一步提高。

液氢/液氧动力推进系统相对于目前使用的一般航空燃料系统具有重量上的优势。

如若液氢/液氧推进器不能在航空器起飞加速和降落减速时完全适用目前的地面条件,可借鉴航天器的发射飞行经验,在液氢/液氧推进系统中配备常规燃料推进系统。

●开发原子氢能动力系统
虽然液氢/液氧系统体积较小,但是其易燃易爆的特性在广泛应用于民航工业中有较大的难度,同时保持氢氧液体状态的高压低温条件也对飞行器的制造、维修、飞行带来了高度的挑战。

如能在常温常压下储存氢气,可带来氢能在更多领域的应用。

利用纳米技术,选用特定的物质,在原子或分子水平上,构成特殊的原子储存管道,利用特殊方法,将氢气以原子形式储存于储存材料的管道之中。

利用这种原理,可在一立方厘米的材料中储存几百升的氢气。

在地面大气压下,氢气可安全的储存运输,到达万米高空后,气压鄹减,使用特殊的技术,使储存材料中的氢气源源不断的释放而出。

这种技术,需配备一系列专用技术手段,从氢气的储存材料的开发到氢气的充入、释放,及氢气动力推进器的开发。

2.氢气燃料电池
●磷酸盐型燃料电池
磷酸盐型燃料电池是最早的一类燃料电池,工艺流程基本成熟,美国和日本已分别建成4500千瓦及11 000千瓦的商用电站。

这种燃料电池的操作温度为200℃,最大电流密度可达到150毫安/平方厘米,发电效率约45%,燃料以氢、甲醇等为宜,氧化剂用空气,但催化剂为铂系列,目前发电成本尚高,每千瓦小时约40~50美分。

●融熔碳酸盐型燃料电池
融熔碳酸盐型燃料电池一般称为第二代燃料电池,其运行温度650℃左右,发电效率约55%,日本三菱公司已建成10千瓦级的发电装置。

这种燃料电池的电解质是液态的,由于工作温度高,可以承受一氧化碳的存在,燃料可用氢、一氧化碳、天然气等均可。

氧化剂用空气。

发电成本每千瓦小时可低于40美分。

●固体氧化物型燃料电池
固体氧化物型燃料电池被认为是第三代燃料电池,其操作温度1000℃左右,发电效率可超过60%,目前不少国家在研究,它适于建造大型发电站,美国西屋公司正在进行开发,可望发电成本每千瓦小时低于20美分。

此外,还有几种类型的燃料电池,如碱性燃料电池,运行温度约200℃,发电效率也可高达60%,且不用贵金属作催化剂,瑞典已开发200千瓦的一个装置用于潜艇。

美国最早用于阿波罗飞船的一种小型燃料电池称为美国型,实为离子交换膜燃料电池,它的发电效率高达75%,运行温度低于100℃,但是必需以纯氧作氧化剂。

后来,美国又研制一种用于氢能汽车的燃料电池,充一次氢可行300公里,时速可达100公里,这是一种可逆式质子交换膜燃料电池,发电效率最高达80%。

燃料电池理想的燃料是氢气,因为它是电解制氢的逆反应。

燃料电池的主要用途除建立固定电站外,特别适合作移动电源和车船的动力,因此也是今后氢能利用的孪生兄弟。

3.氢能在工业的应用
●电子工业
电子工业中多晶硅的制备需要用到氢。

当硅用氯化氢生成三氯氢硅后,经过分馏工艺分离出来,在高温下用氢还原,达到半导体需要的程度。

当用于氢氧合成氧化,常压下将高纯氢和高纯氧通入石英管内,使之在一定温度下燃烧,生成纯度很高的水,水汽与硅反应生成高质量的SiO2膜。

光导纤维的应用和开发是新技术革命的重要指标指标之一,石英玻璃纤维是光导的主要类型,在制造过程中,需要采用氢氧焰加热,经数十次沉积,对氢气的纯度和洁净度都有很高的要求。

●食品加工业。

相关主题