医学影像物理学1、X射线的基本特性:X射线的穿透作用、X射线的荧光作用、X射线的电离作用、X射线的热作用、X射线的化学和生物效应。
2、X射线的质:又称线质,表示X射线的硬度,即X射线穿透物体的能力与光子能量的大小有关,光子的能量越大穿透能力越强,越不容易被物体吸收。
3、X射线的量:垂直于X射线束的单位面积上、单位时间内通过的光子数称为X射线的量。
4、光电效应:入射光子与原子的内层电子作用时,将全部能量交给电子,获得能量的电子摆脱原子核的束缚而成为自由电子(光电子),而光子本身整个被原子吸收的过程称为光电效应。
5、在光电效应过程中产生:(1)负离子(光电子、俄歇电子);(2)正离子(丢失电子的原子);(3)标识X射线。
6、康普顿效应:入射当入射光子与原子的外层轨道电子(自由电子)相互作用时,光子的能量部分交给轨道电子,光子的频率改变后发生偏转以新的方向散射出去即散射光子,获得足够能量的轨道电子形成反冲电子,这个过程称为康普顿效应。
7、(1)光蜕变:能量在10MeV以上的X光子与物质作用时发生光蜕变。
(2)电子对效应:只有当入射X射线的光子能量大于 1.02MeV时才能发生电子对效应。
8、X射线的衰减:X射线与物质相互作用过程中,物质吸收了X射线后,X射线强度的减弱,即为衰减。
包括距离所致的扩散衰减和物质所致的吸收衰减。
9、影响X线衰减的因素:(1)X线的能量:入射光子的能量越大,穿透力越强,光电效应发生的概率下降,X线衰减越少,透过的X线强度越大。
(2)吸收物质的密度:吸收物质的密度越大,X 线衰减越大。
人体的组织密度大致分为三类,即高密度组织、中等密度组织、低密度组织。
(3)吸收物质的原子序数:吸收物质的原子序数越大,X线衰减越大。
(4 )吸收物质的每克物质的电子数越大,X线衰减越大。
10、X射线摄影基本原理:用胶片代替荧光屏,透过人体的X射线作用在胶片上,由于X射线的光化学作用,使胶片感光,因各组织器官的密度、厚度不同,对X射线的衰减不同,对胶片的感光程度也就不同,于是形成X射线影像。
11 、胶片主要感光材料:溴化银12、计算机图像处理主要包括图像增强(选择性加强图像中某些有用的信息,削弱或去除无用信息)、图像恢复(力求恢复图像的原来面貌)、图像兴趣区的定量估值与三维图像重建等等。
13、图像增强:对比度增强(是图像增强技术中比较简单但又十分重要的一种方法。
如灰度变换法、直方图调整法)、图象平滑、图象锐化、同态滤波、伪彩色与假彩色处理、代数运算、几何运算。
14、数字减影血管造影(DSA基本方法:时间减影、能量减影、混合减影。
21、能量减影条件:利用碘在33keV附近对X线衰减系数有明显的差异而进行。
15、影像板(IP板):(1)表面保护层:防止PSL物质在使用过程中受到损伤。
它不能随外界的温度、湿度的变化而发生变化,并在非常薄的条件下能弯曲、耐磨损、透光率高。
常用聚酯树脂类纤维制造这种保护层。
(2)PSL物质层:将PSL物质混于多聚体溶液中,涂在基板上,干燥而成。
(3)基板:基板的作用是保护PSL物质层免受外力的损伤。
要求具有很好的平面性、适度的柔软性及机械强度,材料是聚酯树脂纤维胶膜,厚度在200〜350um。
(4)背面保护层:防止使用过程中成像板之间的摩擦损伤,其材料与表面保护层相同。
16、体素:指在受检体内欲成像的断层表面上,按一定大小和一定坐标人为地划分的很小的体积元。
17、像素:指在图像平面上划分的很小的小单元,它是构成一幅图像的最小点,是构成图像的基本单元。
18、CT=k(u-u w)/u wCT值:CT影像中每个像素所对应的物质X射线线性平均衰减量大小的表示。
19、窗口技术:指CT机放大或增强某段范围内灰度的技术。
窗宽=CT max - CT min 窗位=(CT max + CT min )/220、窄窗宽:适用于软组织部位,如脑和腹部。
宽窗宽:适用于对比度较大的部位,如肺和骨骼。
21、螺旋CT的优势:一次屏息完成扫描、减少部分容积效应、无间隙、叠加影像任意重建无需额外投照、为3D重建提供高质量的数据。
22、层厚选择【选择适当层厚是为达到边缘锐利度(空间分辨率)和噪声的平衡,因为他们相互制约】对CT机的影响:(1)层厚厚:低噪声、更好的密度分辨率、边缘锐利度(空间分辨率)较差、部分容积效应。
(2)层厚薄:高噪声、密度分辨率差、更好的边缘锐利度(空间分辨率))、无部分容积效应。
23、磁共振成像(MRI)原理:利用射频电磁波对置于磁场中的含有自旋不为零的原子核的物质进行激发,发生核磁共振,用感应线圈采集共振信号,经处理,按一定数学方法建立的数字图像。
24、旋进也称进动:描述的是具有角动量的物体或体系在外力矩作用下,其角动量发生改变的现象。
角动量的改变包括两方面,一是大小改变,二是方向改变。
旋进是角动量方向发生连续改变的现象。
25、核磁共振现象中的共振吸收:用RF电磁波对样品照射,如果RF电磁波的能量刚好等于原子核能级劈裂的间距时,就会出现样品中的原子核强烈吸收电磁波能量,从劈裂后的低能级向相邻的高能级跃迁的现象。
26、磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。
27、纵向驰豫时间(T i):纵向恢复时间是由于被激发的反平行于静磁场的质子恢复到平行状态,所以纵向磁化增大。
弛豫快慢遵循指数递增规律,把从0 增大到最大值的63%的所需时间。
28、横向驰豫时间(T2):横向衰减是由于相位同步质子的又开始变得不同步,所以横向磁化减小。
弛豫快慢遵循指数递减规律,把从最大下降到最大值的37%的时间定义为横向驰豫时间。
29、T i、T2的物理学意义及生物学意义(P108)。
30、驰豫过程的综合表示(三种运动的综合过程):磁化矢量的旋进、纵向磁化的逐渐增大过程、横向磁化的逐渐减小过程。
(如图一所示)31、K空间:抽象的频率空间,是一个以空间频率为坐标轴的空间坐标系所对应的空间。
32、K空间的空间频率分布是中心频率为零,距中心频率越远,频率越高。
33、K空间的性质:储存在K空间不同位置的MR信号对图像的贡献不同。
中心部分对应的MR言号空间频率低,幅度大,主要形成图像对比度。
外围部分对应的MR信号空间频率高,幅度小,主要形成图像的分辨力。
34、磁场修正的方法有两种,其一可在磁场适当部位加入金属材料(在设备安装过程中,一次性安装,调试完成的)。
其次可采用补偿线圈的方法来实现(比较灵活,可在MRI装置运行中由主控系统调试完成)。
35、放射性核素显像(RNI)本质:就是体内放射性活度分布的外部测量,并将测量结果以图像的形式显示出来。
36、RNI不可替代性依据:RNI可以获取定性、定量、定位的生物体内物质动态变化规律。
37、核素:凡是具有一定原子序数、一定质量数和一定能量状态的各种原子,统称为核素。
38、同位素:具有相同原子序数,但质量数不同的核素称为同位数。
39、同质异能素:凡具有相同的原子序数和质量数,处于不同能量状态的一类核素,它们彼此称为同质异能素。
40、核衰变的特点:某些核素能自发地发生结构变化及能量状态的改变,放出射线并转变为另一种核素的过程叫核衰变。
核衰变方式有a、B、丫等多种,但所有放射性核素在衰变时都遵循着共同的基本规律。
如下:N =N0e i t其中:N为t时刻衰变核的剩余数目,NO为t=0时刻的衰变核数目,入为衰变常数41、半衰期:(1 )物理半衰期符号T1/2,在单一的放射性核素衰变过程中,放射性活度降至原有值一半时所需要的时间,称为物理半衰期,简称半衰期(T1/2 )。
(2 )生物半衰期符号Tb,是指进入生物机体内的放射性核素,由于生物代谢过程从体内排出到原来放射性活度的一半时所需要的时间。
(3 )有效半衰期符号Te,进入生物机体内的放射性核素由于放射性衰变及生物代谢的共同作用,该放射性核素的活度减少到一半所需的时间称为有效半衰期。
即放射性核素被引入生物机体内时,放射性活度一方面按衰变规律减少,另一方面还会通过生物代谢排出。
42、放射性制剂制备的要求:(1).高产率。
即最大限度的利用放射性核素。
(2).微量、低浓度。
医用放射性核素的放射性活度很高,对应的质量应很低,常在微克数量级。
如活度为1mCi的核素99mTC的质量仅为0.19ug,所以放射性制剂的制备过程是一个微量、低浓度过程。
(3).简便、快速。
制备过程要求操作步骤简便、易行,最好是一步法。
(4).安全。
制备过程中要有对射线的防护措施,如通风、屏蔽,应在特殊的化学实验室中进行,应尽量避免高温、高压等剧烈反应.避免使用强腐蚀、高挥发、易燃、易爆物质。
43、闪烁计数器是射线探测的基本仪器,它由闪烁体、光学收集系统和光电倍增管组成。
其测量原理是:丫射线在晶体内产生荧光,利用光导和反射器组成的光收集器将光子投射到光电倍增管的光阴极上,击出光电子,光电子在光电倍增管内被倍增、加速,在阳极上形成电流脉冲输出,电流脉冲的高度与射线的能量成正比,电流脉冲的个数与辐射源入射晶体的光子数目成正比,即与辐射源的活度成正比。
44、PET符合探测原理:两个相对的丫闪烁探头加符合电路组成湮灭符合探测装置。
上述两个方向相反的光子若同时分别进入这两个探头,通过符合电路形成一个信号而被探测到。
湮灭辐射发生的位置限于这两个探头的有效视野内,凡在此视野外或在此视野内发生的湮灭辐射,所产生的两个丫光子不能同时进入两个探头者,都不能形成符合信号,因而不能被记录,此即符合检测原理。
45、多普勒原理:当声发射源与声接收器有相对运动时,或者在更复杂的情况下,当声发射源、声接收器和传播的介质有相对运动时,接收器所接收到的声频率与发射频率有所不同,这一现象称为多普勒效应•声源与接收器相对运动的速度越大,频率改变量也越大•46、超声的物理特性:(1)指向性(2)反射、折射、散射和绕射(3)吸收与衰减(4)分辨力与穿透力(5)多普勒效应47、超声成像的基本原理:声阻抗特性、声衰减特性、多普勒效应48、声阻抗(z)=介质密度(p )X声速(c),△ Z> 0.1%即可产生反射49、超声波在界面发生反射或折射的条件是(1)介质的声阻抗在界面处发生突变(2)界面的线度远大于声波波长及声束的直径50、血流速度大小的提取方法有三种:(1)过零检测法(2)平均频率解调(3)频谱分析方法。
51、超声多普勒彩超的基本工作过程:(1)发射固定频率的脉冲/ 连续式超声波。
(2)提取频率已变的回声。
(3)将回声频率与发射波频率f相比,获得多谱勒频移f D,取正负值。
52. 血流运动状态的彩色显示方法速度方式、方差方式、功率方式53. 多普勒超声方向信息提取的方法:(1)单边带分离法: 利用一个高通滤波器和一个低通滤波器把接收到的混合信号,即频谱的上、下边直接分离开来。