声学技术I海洋声学目标探测技术研究现状海洋声学LI标探测技术对于维护国家主权,保障国家海洋环境安全,促进海洋探索与开发至关重要。
近年来,水下口标隐身技术不断进步,给水声探测技术带来了巨大挑战。
针对这一挑战,低频、移动、多节点水声探测技术日益受到重视,同时,探测隐身LI标的多源声学网络也应运而生。
山此可见,通过水声通信组网技术将主被动探测节点连接成水声探测网络,并对获取的多源信息进行融合,是海洋声学LI标探测技术发展的一个重要途径。
被动探测技术海洋声学H标被动探测是应用最为广泛的技术之一,其主要利用水听器及其阵列接收U标自身辐射噪声或信号,如潜艇辐射的螺旋桨转动噪声、艇体与水流摩擦产生的流噪声、以及各种发动机机械振动引起的辐射噪声等,同时结合信号处理技术以提取有用信息,如口标信号特征、方位、距离和深度等。
山于被动探测系统本身并不发射信号,所以口标不易察觉其存在,具有较强的隐蔽性。
水听器及其阵列构成了被动探测的硬件基础,而被动声呐系统则是水听器及其阵列的主要安装平台,其形式、尺寸及安装形式等都对信号接收产生直接影响;信号处理部分则构成了软件基础,决定了信息提取的有效性,是被动声呐系统的大脑。
硬件和软件基础共同决定了被动探测技术的性能。
1•典型被动声呐平台典型被动声呐平台主要包括岸基平台、舰船与潜艇平台以及航空飞行器平台,其包含的水听器主要有标量的声压水听器和矢量水听器2种,阵列形式可分为线型、面型和体积型,实际中可依据不同的应用环境选择不同的阵型。
岸基声呐是固定式水声监听系统的一种,一般以海岸为基地,在大陆架或者海岛周边大型布放水下基阵,用于警戒和监视海峡、港口、航道以及敬感水域的敌方水下潜艇活动,是反潜预警系统的重要组成部分。
一般山线性水听器基阵、海底电(光)缆、岸上终端电子设备以及电源系统等组成。
岸基声呐中较为典型的是美国在冷战时期部署的声音监控系统(SOSUS),该系统釆用子阵技术,将一条长线阵分成2〜3个子阵单独处理,再结合起来进行波束形成,从而得到较窄的波束和更好的指向性。
图1洛克希徳-马丁公司生产的TB-29系列细长线阵船用被动声呐主要包括拖曳阵声呐和舷侧阵声呐等。
其中拖曳阵声呐具有2个显著的特点:基阵孔径不受舰(艇)空间尺度的限制,可比一般的舰(艇)载声呐基阵孔径大1个数量级以上,因而它在极低频段仍有较高的空间增益,适合在低频工作:基阵远离其拖曳平台,并可选择在最有利的深度工作,背景干扰大为减小,传播条件相对有利。
基于这两大特点,拖曳阵声呐与其他常规声呐相比,探测能力大为提高。
拖曳阵声呐作为平台声呐中工作频率最低、作用距离最远的设备,已经成为舰船的主要声呐装备之一,典型的有美国潜用粗线拖曳阵声呐TB-16(相对于直径小于40mm 的细线阵而言),以及后续改进的细线型TB-29A,如图1所示。
航空声呐是海军反潜直升机和反潜巡逻机的主要反潜探测设备。
用于搜索、识别和跟踪潜艇,保障机载反潜武器的使用或引导其他反潜兵力实施对潜攻击,主要分为吊放式声呐和声呐浮标系统2种。
吊放式声呐装备于反潜直升机,一般釆取跳跃式逐点搜索。
当直升机飞临某一探测点,低空悬停,将换能器基阵吊放入水至最佳深度,以主动或被动方式全向搜索:对某一点搜索完毕后,即将基阵提出海面飞向另一探测点搜索。
典型的吊放声呐有法国的FLASH和美国的HELRAS系统,其被动接收水听器基阵均是体积型阵列,如图2所示。
(b) HELRAS(a) FLASH图2典型的航空吊放声吶声呐浮标是一种抛弃式航空声呐系统,一般装备于固定翼反潜飞机上,包含浮标投放装置、无线电信号接收机和信号处理显示设备等。
使用时,反潜机先将浮标组按一定的阵式投布于搜索海区,然后在海区上空盘旋以接收山不同浮标经无线电调制发射的口标信息。
典型的声呐浮标有澳大利亚的BARRA和美国的ADAR系统,前者包含的水听器阵列是一个5X 5 的多环平面阵(见图3),后者则包含一个40元的体积型水听器基阵。
图3 BARRA声呐浮标2.被动信号处理技术被动探测中,信号处理技术的主要任务是利用各种技术手段提高输出信噪比,将LI标信号从噪声和干扰中区分开来,进而实现水下LI标的检测、定位和识别。
现阶段,提高信噪比主要有时域、空域处理和后置处理等技术途径。
限于篇幅,文中将主要从空域处理的角度进行介绍。
⑴波束形成技术波束形成是被动声呐系统中的重要部分,其功能主要有:抑制环境噪声,提高输出信噪比;实现对LI标信号波达方向的估计;检测和分辨多个不同方位到达的平面波信号。
波束形成技术主要包括数据独立和自适应波束形成两大类。
①据独立波束形成技术数据独立波束形成方法的权值向量是固定的,不随接收数据的变化而变化,其形成的波束响应同样是固定的。
延迟求和方法以及各种加窗处理技术都是具有代表性的固定权值波束形成方法,如Chebyshev窗、Hanning窗和Hamming窗等。
在数据独立波束形成方法中,获取更高的指向性,以提高检测微弱信号和分辨紧邻LI标的能力,一直是其主要的研究方向,由此催生出了 "超指向性”方法。
②自适应波束形成技术自适应波束形成技术,也可称之为数据驱动波束形成技术,其权值向量随接收数据的变化而自适应调整,所获得的波束响应也随之变化。
自适应波束形成器可以在干扰方位自适应产生凹槽,从而提高信干噪比(SINR),其中最典型的是Capon于1969年提出的最小方差无失真响应(MYDR)波束形成技术。
该技术在保持波束指向方向信号无失真的条件下,通过使基阵输出功率最小来实现对干扰的有效抑制,有较好的方位分辨能力和较强的干扰抑制能力。
然而,MVDR方法的稳健性较差,当出现阵列流形误差时,如波达角(A0A)误差、阵形校准误差、平面波假设的失配等,其性能会急剧下降。
为了减小MVDR方法对各种误差失配引起的性能下降,人们提出了各种稳健算法,而对角加载类方法是最常用的一种。
Cox等最早通过增加白噪声增益的方法推导出对角加载算法的表达式,提高了MVDR波束形成器对阵列流形误差的稳健性。
口噪声增益约束方法和巧一种常见的加权值范数约束方法,均可等效为对角加载方法。
然而,对角加载算法很难给出合适的对角加载量的值,从而给该方法的实用带来一定的限制。
⑵方位估计技术基于传感器阵列的方位佔计(D0A)技术是被动声呐的遼要研究内容,目前主要的方位佔计方法可以分为以下3类:波束扫描类算法、子空间类算法和稀疏信号处理类算法。
①波束扫描类方位估计算法常用的方位估计技术主要有波束形成方法和高分辨方位佔计方法。
最早的基于阵列的DOA算法为常规方法,也称为Bartlett方法。
山于常规方法易于实现、稳健性好及对信号之间的相干性不敬感,很多声呐系统均釆用此种技术预成多波束来实现对L1标方位的估讣。
但常规方法的角度分辨能力受瑞利极限的限制,无法分辨2个在方位上翥得较近的信号源。
②子空间类方位估计算法自20世纪70年代以来,空间谱估计研究方面涌现出大量文献,这些理论克服了方位分辨的瑞利准则,获得了超过常规方法的方位分辨能力。
其中以美国的Schmidt 等提出的多重信号分类(MUSIC)算法最为著名,它的提出促进了特征子空间类算法的兴起。
这类算法的共同特点是通过对阵列接收数据特征分解或奇异值分解等,将接收数据划分成2个相互正交的子空间,即信号子空间和噪声子空间。
子空间分解类算法从处理方式上可分为2类:一类是以MUSIC为代表的噪声子空间算法,另一类是以旋转不变子空间(ESPRIT)为代表的信号子空间类算法。
MUSIC算法是利用导向矢量与噪声子空间的正交特性,而ESPRIT算法则是利用数据协方差矩阵信号子空间的旋转不变特性。
与MUSIC算法相比,ESPRIT算法计•算量小,不需要进行谱峰搜索。
③稀疏信号处理类方位估计算法稀疏信号处理类算法是近十年发展起来的DOA估汁算法。
此类算法首先将空间扫描方位离散化,信号分布于有限数LI的扫描方位位置上,没有信号的扫描方位上信号参数为零。
通常U标空间方位分布模型具备稀疏性,利用信号的稀疏信息可以提高DOA估计性能。
稀疏信号处理类算法主要包括稀疏信号重构类算法、稀疏协方差拟合类算法和非正则参数或非人工参数类算法。
稀疏信号重构类算法如多测量向量的欠定系统局域解法(M-focuss)和基于奇异值分解的厶范数稀疏方法(7;-SVD),利用扫描网格点信号波形的厶(0〈pWl)范数和信号重构模型误差的Z范数联合最小化来实现信号方位估计。
稀疏协方差拟合类算法如稀疏谱拟合算法(SpSF),其思路与稀疏信号重构类算法一致,利用基阵输出数据的2阶统计量信息,通过扫描网格信号功率的人范数和协方差矩阵拟合误差的厶范数联合最小化来实现信号方位估计。
上述2种算法的共同弊端是均需预先给定正则参数,然而正则参数很难做到恰当的选择。
非人工参数类算法如协方差稀疏迭代fill-(SPICE)算法和稀疏近似最小方差(SAMV)算法并不是从心,厶范数联合最优化入手,而是从最大似然佔计的角度,利用釆样协方差与期望信号模型协方差的关系给出信号的参数估计准则,并在此估计准则下得到扫描网格点的信号功率谱佔计,算法过程无需提供任何正则参数。
对于宽带信号,波束扫描类方位估讣算法如宽带稳健Capon波束形成方法,利用不确定集约束提高有限快拍数量Capon波束形成算法的稳健性,具有一定高分辨能力;宽带信号的子空间方位估计算法分为非相干信号子空间(ISS)算法和相干信号子空间(CSS)算法。
ISS算法通过子频带非相干叠加实现宽带信号方位佔计,但只能处理非相干信号;CSS算法将宽带信号映射到某个参考频点上,再利用窄带子空间类算法估计U标方位,具有相干信号方位估计能力,但该算法需提前给出LI标方位的预估角度,且预佔角对算法性能影响较大。
对于稀疏信号处理类算法,几-SVD算法已经被应用于宽带信号方位估计,取得较好DOA估计性能,然而7-SVD算法待优化的参数较多,计算量庞大,正则参数选取困难;宽带信号协方差矩阵稀疏表示算法无需将接收信号变换到子带进行处理,而是利用宽带信号的时延信息和协方差矩阵的稀疏性,在时域实现LI标的方位估计,但该方法要求入射信号必须具有相同的自相关函数,从而建立协方差矩阵内部元素与信号时延的线性映射关系,应用面较窄。
主动探测技术主动探测技术所涉及的范围很广,所探测的目标有潜艇、蛙人、无人水下航行器(UUV)、水雷、沉船等,据此所使用的频率有儿百赫兹、儿千赫兹、儿十千赫兹、儿百千赫兹等。
文中主要聚焦于工作频率为儿百赫兹到儿千赫兹的对潜主动探测技术。
过去儿十年来,潜艇减振降噪技术的发展,使得潜艇辐射噪声大约以每年平均ldB的速度降低,这给被动探测技术带来了很大挑战,同时促使主动水声探测技术得到了足够的重视和充分的发展。