拉伸法测钢丝杨氏模量
实验目的
1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量;
2. 掌握有效数字的读取、运算以及不确定度计算的一般方法.
3. 掌握用逐差法处理数据的方法;
4. 了解选取合理的实验条件,减小系统误差的重要意义.
实验仪器
YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干.
1.标尺
2.锁紧手轮
3.俯仰手轮
4.调焦手轮
5.目镜
6.内调焦望远镜
7.准星
8.钢丝上夹头
9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝.
实验原理
设一粗细均匀的钢丝,长度为L 、横截面
积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即
F L E
S L ∆= 或 //F S
E L L
=∆ 式中E 称为杨氏模量,单位为
N·m -2,在数值上等于产生单位应变的应力.
由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题.
本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放
在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动.
设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此
时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度).
由图可知
2
tan L
d θ∆=
,1011tan 2s s s d d θ-∆== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有
θtan ≈θ2d L
∆=
,θ2tan θ2≈1
101d s d s s ∆=-=
由此可得 2
1
2d L s d ∆=
∆ 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式:
1
228mgLd E D d s
=
π∆
其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E .
实验内容
1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度;
2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次;
3. 用游标卡尺测量光杠杆常数d 2一次;
4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度;
5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果.
实验步骤
1. 杨氏模量测定仪的调整
(1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直;
(2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直.
(3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在
支架上. 调整到平面镜法线和望远镜轴线等高共轴.
(4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节
平面镜倾角,直到在平面镜中看到镜筒或标尺的像.
(6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝.
杠杆架
反射镜
固定平台
砝码
光杠杆结构图
θ
θ
光杠杆
望远镜
标尺
s 0
s 1
d 1
d 2
ΔL
θ
θ
Δs
2. 用千分尺在不同方向、位置测量钢丝的直径D ,共测6次,测量前应先记录千分尺的零点读数;
3. 用钢卷尺测量镜面到标尺的距离d 1;
4. 在砝码钩上放上测量时要加的全部(共加7次)砝码(不包括预加的本底砝码)的一半(3-4块),细心调节平面镜倾角,使望远镜中看到的标尺像在零刻线附近,以保证在轴线附近的范围内测量.
4. 去掉刚才所加的砝码,开始测量,记录初始值0
s ',逐个增加砝码,记录每一步的读数i s ',再逐个减去砝码,记录每一步同一砝码数对应的读数i s '';
5. 测量光杠杆常数d 2.可将光杠杆的三个脚放在数据记录纸上按下三个印,作连接前两脚的连线和后脚到该连线的垂线,用游标卡尺测量这一距离.
6. 整理实验数据,交指导老师签字,整理仪器,完成实验.
注意事项
1. 实验系统调好后,一旦开始正式测量,在实验过程中不能再对系统任一部分进行任何调整,否则,所有数据将重新再测;
2. 加减砝码时要轻拿轻放,槽口要相互错开,避免砝码钩晃动,在系统稳定后读数;
3. 同一荷重(相同砝码数)下的两个读数要记在一起.增重与减重对应同一荷重下读数的平均值才是对应荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞后)等引起的系统误差.
4. 实验完成后,应将砝码取下,防止钢丝疲劳.
数据记录
表一 L 、d 1、d 2测量数据表 单位: mm
表二 钢丝直径D 的测量数据表
千分尺零点读数 =仪ε mm 单位: mm
表三 Δs 的测量数据表 单位:mm
数据处理
1
.计算每增加一块砝码(1kg)的钢丝伸长量Δs 的最佳值及不确定度 (1) Δs 的最佳值(用逐差法)
)(41041s s s -=∆;)(41152s s s -=∆;)(41263s s s -=∆;)(4
1
374s s s -=∆;
)(4
1
4321s s s s s ∆+∆+∆+∆=∆
(2) 计算 的实验标准差: ()S
s ∆= (3) 计算 平均值的实验标准差: (
)S s ∆=(4) 标尺的示值极限误差: Δm=0.5mm
(5) 合成不确定度:
()
u s ∆==
2.D 的最佳值及不确定度的计算
(1) D 的最佳值: ∑==6
1
61i i D D
(2) 计算D 的实验标准差: ()S D =(3) 计算 D 平均值的实验标准差: ()S D = (4) 千分尺的的示值极限误差:Δm =0.004mm
(5) 计算D 的合成不确定度: ()u D ==3. E 的最佳值的计算和不确定度的计算 (1) E 的最佳值的计算: s
d D mgLd E ∆=22
1
8π
(2) E 的合成不确定度的计算
取u (d 2)=0.02mm ,u (d 1)=5mm , u (L )=5mm ,及2和3中的不确定度得到
E S S u D D u L L u d d u d d u E u ⋅⎪⎭⎫
⎝⎛∆∆+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝
⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=2
222
22211)()(2)()()()(
(3) E 的相对不确定度的计算,将实验值与 E 的公认值 E 0=2.05×1011 N ·m -2比较,计算其相对不确定度:
()100%E
E E E =
⨯。