当前位置:文档之家› 飞行器制造技术要点

飞行器制造技术要点

一、概论1、飞行器加工工艺就是通过改变原材料、毛坯或半成品的形状、尺寸、性质或表面状态,使之成为符合设计要求的飞行器产品的零部件的方法。

2、飞行器结构设计的基本要求(1)必须保证飞行器具有精确地气动外形(2)在确保导弹一次使用成功的前提下,要满足规定的强度和刚度要求,必须尽量简化导弹结构、减轻质量并降低制造成本。

(3)必须使飞行器能够适应所规定的严酷自然环境和力学环境。

(4)必须使飞行器具备良好的可维修性(5)必须强化飞行器系统及各分系统的电磁兼容设计3、采取的措施(1)飞行器的结构材料主要采用比强度和比刚度高的金属材料和非金属复合材料,部分采用钛合金和铝锂合金。

(2)在结构设计中,尽量采用先进工艺技术以满足飞行器结构、材料及加工精度等方面要求。

(3)由于飞行器正在朝小尺寸、大威力、超声速、超远程方向发展,因此应大力推广和应用整体结构、蜂窝夹层结构、强力旋压舱段(包括内外旋压)和高性能增强复合材料结构。

(4)大力推广应用计算机辅助设计与制造(CAD|CAM)一体化技术,采用高精度的通用机床设备和测试(包括无损探伤)设备,以保证新一代武器系统制造精度和缩短研制周期。

4、特点(1)新工艺新技术应用比较多比较快,工艺预研必须走在飞行器研制的前面,以便为新型飞行器的诞生创造条件。

(2)所涉及的不少专业技术属于高科技范畴。

(3)加工工艺的实践性强,其验证工作贯穿于飞行器研制全过程,特别是地面试验必须充分并尽量模拟真实情况。

(4)所加工产品零部件的质量控制十分严格。

5、先进连接技术焊接分:钎焊、熔焊、压焊(1)钎焊,是使被连接的构件之间填充熔点低于被焊接材料的材料并使之熔化,而在连接界面上润湿和漫流,从而填充被焊接头的间隙,然后冷却结晶形成不可拆卸的冶金结和的连接方法。

根据焊料液相线温度高低分为:硬钎焊和软钎焊特点:1)温度远低于母材料的融化温度,对母材性能没有明显影响。

2)可在焊接熔化温度下对焊件实体整体均匀加热,对全焊缝同时焊接,焊件的温度梯度小,应力变形小,易保持焊件精度。

3)可实现多种异种金属、金属与非金属之间的连接。

4)对热源的要求低、工艺简单、易于自动化,焊件相对具有较高的可靠性。

(2)熔焊,是将材料加热至熔化状态,然后冷却结晶成一体,利用液相的相溶而实现原子间的结合的连接方法。

加热热源不同可分为:电弧焊、等离子弧焊、电子束焊、激光焊、气焊(利用化学热)。

特点:1)加热温度高2)焊接件有冶金过程3)焊接温度梯度大,因而焊件的变形也较大4)焊缝金属组织存在着相变,母材与填充金属在焊缝及其附近发生扩散迁移(3)压焊,是在连接的表面采用加压、摩擦、扩散等特理作用下,两个连接表面在固态下达到紧密接触,金属原子获得能量,活动能力增强而互相接近并扩散形成固态连接。

压焊分:摩擦焊、超声波焊、爆炸焊、扩散焊、电阻电焊。

特点:1)加热的温度低于被焊材料的熔点,必须利用压力才能是连接的材料紧密接触2)在压力下界面两侧存在着原子的扩散,扩散的是否充分,取决于加热的压力,温度和时间3)可在保持基体金属原有的性能条件下,获得同种或异种金属焊接的牢固接头4)不受零件大小、断面尺寸和表面形状的限制,能实现形状复杂、厚度相差悬殊或多层的连接5)设备费用较高,生产效率低,对金属的结合面的加工精度和粗糙度要求较高二、锻造与铸造工艺1、锻造是利用金属的可塑性能,在在锻锤的打击力或压力机的压力作用下,改变坯料或锭块的形状尺寸,使其达到预定的要求,同时改善金属的组织和机械性能。

锻造分自由锻(包括胎模锻造)和模锻两大类。

(1)自由锻造是一种在自由锻锤或压力机上,利用平模(砧)或形状简单的模具对金属进行压力加工的方法,即在一定的温度条件下,通过打击成形金属,使其发生永久变形。

自由锻造的特点:1)相对于切削加工,金属在锻造前后体积不变(表面氧化皮忽略不计),微观组织致密,机械性能好。

2)相对于模锻等其他铸造方法,其工艺过程简单,对工艺装置要求不高,只需要一些简单的模具或工具就可以进行生产,生产准备周期较短,费用低,尤其适合于试制和小批量生产中的制坯工序。

(2)塑性变形通常分为热变形与冷变形两类。

在较高温度下热变形后,金属的强度和硬度变化不大,在较低温度下冷变形后,金属的强度和硬度会出现一些变化。

这是因为在热变形温度条件下原子扩散引起回复再结晶,而冷变形时(低于回复再结晶温度)不存在回复和再结晶所致。

(3)金属的塑性变形由晶内变形和晶间变形叠加构成。

造成晶内变形的主要原因是滑移。

滑移面上的原子密度最大。

(4)自由锻造常用设备有空气锤、蒸汽—空气自由锻锤和铸造水压机等。

2、胎模锻造是在自由锻造的基础上发展起来的。

它利用自由锻锤进行模锻,所用的模具称为胎模。

胎模结构简单,形式多样。

毛坯需根据锻件形状确定,既可直接采用棒料,也可通过自由锻造或使用预锻胎模制造毛坯,最后在成形胎模中终锻成形。

因此它是介于自由锻和模锻两者之间的一种独特的工艺形式。

(1)胎模锻造特点:1)胎模锻造时,锻件的最终形状和尺寸需靠模具型腔获得。

2)金属在胎模内成形,使操作简化、火次减少,同时因金属流动受到型腔模壁的限制,锻件内部组织比较致密并且纤维连续3)由于胎模的作用,锻件表面质量和尺寸形状的精确程度得到改善,在机械加工余量、工艺余块和烧损等方面造成的金属损耗也大为降低。

3、氧化就是炉气中的氧化性气体与被加热工件的表面层金属发生化学反应,生成三氧化二铁、四氧化三铁、氧化铁等氧化物。

他造成金属的烧损,直接影响锻件的表面质量和粗糙度。

(1)应该对氧化反应加以控制,就一般火焰加热炉而言,为减少氧化皮的生成,在加热工艺方面应采取以下三措施:1)在保证金属加热质量的前提下,尽量采取快速加热以缩短加热时间。

特别是金属在高温停留的时间不宜过长。

考虑到加热炉的容量,工件不宜装过多2)控制炉气中过剩空气的含量,减少燃料中水分,以免炉内的氧气过剩3)炉膛里的正压力宜低些,但要防止由于负压而造成炉内吸入冷空气。

(2)当在混有含铜料的炉内加热钢料时,熔点较低的痛,在高温下也能从钢的晶界深入而破坏晶间联系,使钢变脆,锻打时毛坯将产生龟裂。

因此,绝不允许钢和铜在同一炉内加热。

4、铝合金低压铸造和差压铸造(1)低压铸造的基本原理如图2—20所示,铸型装在密封的坩埚上,两者用升液管连接起来。

坩埚内通入0.02—0.08MPa的压缩空气,在此压力作用下,坩埚内的铝合金液沿升液管自下而上通过浇口平稳地充满铸型,并在一定的压力下结晶,直至完全凝固。

然后解除坩埚液面上的压力。

升液管和浇道中没有凝固的铝合金液靠自重流回坩埚,铸型中间形成了所需要的铸件。

(2)与自由锻造相比较,低压铸造具有以下工艺特点1)低压铸造充型采取底注方式,且充型速度容易控制,合金液充型平稳。

低压铸造依靠升液管输送合金,从而避免带入外来夹杂物,故充型合金液洁净。

2)铸件在低压下结晶凝固,提高了铸件的补缩效果,铸件组织比较致密。

3)低压铸造采取压力补缩使铸件的浇注系统简化,合金利用率得到提高4)合金液对铸型的平稳充填,相对提高了合金液的充填能力,有利于大型复杂薄壁铸件的铸造。

5)浇注速度控制方便,以获得质量良好的铸件6)低压铸造仅需控制气动元件来进行浇注,减轻工人劳动强度,劳动条件好。

(3)差压铸造是低压铸造与压力下结晶这两种先进工艺的结合,其特点是靠控制型腔中的反压力来调节合金液的上升速度;其次,压力场的作用贯穿于充型、结晶、凝固的全过程,因而具有优异的浇注、充型和凝固条件。

(4)图2—27是差压铸造原理图。

差压铸造时,铸型和盛有合金液的坩埚分别置于相互隔开并密封的上、下压力筒里。

其充型可分为上压力筒减压法和下压力筒増压法两种。

(5)差压铸造工艺特点:1)可以实现最佳充型速度2)可以获得组织致密的铸件3)可以减少铸件的壁厚效应4)有利于改善铸件的尺寸精度和表面质量5)生产周期较长。

三、飞行器金属材料热处理工艺热处理是改善金属材料及其制品(如飞行器零件、工具等)性能的重要加工工艺之一。

热处理操作通常分为退火、正火、淬火、回火、冷处理、化学热处理和时效等。

四、飞行器的冷加工工艺普通铆接是指最常用的凸头或●头倒钉铆接,其铆接过程是:制铆钉孔,制埋头窝(对铆钉而言),放铆钉,铆接。

无头铆钉连接,是将没有铆钉头的实心圆杆作为铆钉。

铆钉的机械化和自动化,是铆接技术发展的必然趋势。

五、焊接技术焊接通常分为熔焊、压焊和钎焊三种。

用熔化法的称为熔焊,按所需热源不同,有电弧焊、电渣焊、气焊、等离子焊接、电子束焊接及激光焊接等;用加压法(加热或不加热)的称为压焊,如接触焊、摩擦焊、锻焊和冷焊等;利用熔点较焊件低的焊料和焊件连接处一同加热,使熔化的焊料渗入并填满连接处间隙而达到连接(焊件未经熔化)称为钎焊,如铜焊、银焊、锡焊、超声波钎焊及真空钎焊等。

1、焊接方法概述(1)电弧焊是包括有焊条电弧焊、埋弧焊、钨极气体保护焊、熔化极气体保护焊、等离子弧焊等。

它是目前应用最广泛的焊接方法。

(2)电阻焊是以电阻热最为能源的焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。

常见的以固体电阻热为能源的电阻焊,主要有点焊、缝焊、凸焊及对焊等。

(3)高能束焊有两种分别为电子束焊和激光焊。

(4)钎焊是利用熔点比被焊接材料的熔点低的金属做钎料,经过加热使钎料熔化,靠毛细管作用将钎料吸入到接头接触面的间隙内,润湿被焊金属表面,使液相与固相之间相互扩散而形成钎焊接头。

因此,钎焊是一种固相兼液相的焊接方法。

2、电子束焊接的基本原理和特点(1)电子束焊接是利用高速运动的电子的功能,轰击被焊接件的接头处,进行能量转换熔化金属形成焊缝的过程(2)特点:1)极高的能量密度2)理想的保护和条件(真空电子束焊接)3)良好的可达性、可控性和再现性(3)电子束的应用范围:电子束焊接的功率密度高,焊接过程中工件的变形与收缩量小,焊缝的热影响区小,焊接的精度高,焊缝的深度比大,在真空电子束焊接中,焊缝的化学成分纯净。

1)适用于焊接难熔金属、活泼金属和高纯度金属2)适用于通常熔化焊方法无法焊接的异种金属材料的焊接3)可焊接已经淬火的或加工硬化的金属4)由于焊缝的热影响区小,可焊接紧靠热敏性材料的零件5)可对已经精加工到最后尺寸的零件进行焊接6)在电子束焊接中,电子束可射出几百毫米的距离,往往可以对其他焊接方法无法接近的部位进行焊接3、激光焊(1)激光具有亮度高、方向性好、单色性好、相干性好的优点,使激光作为加工热源是十分理想的。

(2)按激光工作物质的状态,激光器可分为固体激光器和气体激光器。

(3)激光焊的特点1)聚焦后的激光具有很高的功率密度,焊接以深熔方式进行2)由于激光加热范围小,在同功率和焊接厚度条件下,焊接速度高3)激光焊残余应力和变形小4)可以焊接一般焊接方法难以焊接的材料,如高熔点金属等,甚至可用于非金属材料的焊接,如陶瓷、有机玻璃等5)激光能反射、透射,能在空间传播相当距离而衰减很小,可进行远距离或一些难以接近部位的焊接6)一台激光器可供多个工作台进行不同的工作,既可以用于焊接,又可以用于切割、合金化和热处理(4)根据激光器输出能量及其工作方式的不同,激光焊分为连续激光焊和脉冲激光焊两种(包括高频脉冲连续激光焊)。

相关主题