当前位置:文档之家› 概率论与数学建模

概率论与数学建模

概率论与数学建模概率论与数学建模基础知识部分 一、概率论:1、概率:刻化某一事件在一次试验中发生的可能性大小的数。

注:事件指随机事件(可重复、可预测、结果明确) 例如抛骰子,抛一枚硬币。

2、常见的随机变量:X (1)离散型:泊松分布:k e P X k k k λλ-(=)=,=0、1、2、、、!实际应用:时间t 内到达的次数;(小概率事件)一本书中一页中的印刷错误数; 某地区在一天内邮件遗失的信件数; 某一天内医院的急症病人数;某一地区一个时间间隔内发生交通事故的次数; 一个时间间隔内某种放射性物质发出的经过计数器的α粒子数等等……(2)连续型:指数分布:x e x>0f X λλ⎧⎨⎩-,()=0,其它其中>0λ为常数 ,记为)(~λExp X特点:无记忆性。

即是P(/)()X s t X s P X t >+>=>一个元件已经使用了s 小时,在此情形下,它总共能使用至少s+t 小时的概率,与开始使用时算起它至少能使用t 小时的概率相等,即元件对已使用过s 小时无记忆。

实际应用:(可靠性理论、排队论)许多“等待时间”都服从指数分布;一些没有明显“衰老”迹象的机械元器件(如半导体元件)的寿命也可也用指数分布来描述……正态分布:x ef X <x<+2μσσπ∞∞22(-)-2()=- 记为2X ~N(,)μσ标准正态分布:X~N(0,1)正态分布标准化:若),(~2σμN Y ,则)1,0(~N X Y σμ-=,标准化的目的在于能够方便查阅书后的标准正态分布表。

“3σ“原则:“3σ“原则被实际工作者发现,工业生产上用的控制图和一些产品质量指数都是根据3σ原则制定。

3、随机变量的特征数(数字特征):均值(期望):k k k x p E X xf x dx ∞∞∞⎧⎪⎪⎨⎪⎪⎩∑⎰=1+-,(离散型)()=(),(连续型)方差:22D X =E X E X ()(())E X E X =-2()(-())中心极限定理:n X X ,,1 是独立同分布的随机变量序列,且22(),(),0i i E X D X μσσ==>则有:)(}{lim 1t t nn X X P n n Φ=≤-+∞→σμ模型一、轧钢中的浪费模型:问题:将粗大的钢坯制成合格的钢材需要两道工序:粗轧(热轧),形成刚才的雏形;精轧(冷轧),得到规定长度的成品材料。

由于受到环境、技术等因素的影响,得到钢材的长度是随机的,大体上呈正态分布,其均值可以通过调整轧机设定,而均方差是由设备的精度决定,不能随意改变。

如果粗轧后的钢材长度大于规定长度,精轧时要把多余的部分切除,造成浪费;而如果粗轧后的钢材长度小于规定长2σx99.7%6σ4σ(1)(2)(3)μ度,则造成整根钢材浪费。

如何调整轧机使得最终的浪费最小。

(1) 问题概述:成品材料的规定长度已知为l ,粗轧后的钢材长度的标准差为σ,粗轧后的钢材长度的均值m ,使得当轧钢机调整到m 进行粗轧,然后通过精轧以得到成品材时总的浪费最少。

(2) 问题分析:精轧后的钢材长度记为X ,X 的均值记为m ,X 的方差为σ,按照题意,),(~2σm N X 。

概率密度函数记为f (x ),当成品钢材的规定长度l 给定后,记x ≥ι的概率为p ', p '=p (x ≥ι)。

在轧钢过程中产生的浪费由两种情况构成:若l X >,则浪费量为l X -;若l X <,则浪费量为X 。

注意到当m 很大时,l X >的可能性增加,浪费量同时增加;而当m 很小时,l X <的可能性增加,浪费量也增加,因此需要确定一个合适的m 使得总的浪费量最小。

(3) 模型建立与求解:这是一个优化模型,建模的关键是选择合适的目标函数,并用 l ,σ,m 把目标函数表示出来。

根据前面的分析,粗轧一根钢材平均浪费长度为:W (x-)f(x)dx+xf(x)d(x), (1)ιιι∞-∞=⎰⎰利用f(x)dx 1+∞-∞=⎰,xf(x)d(x)m +∞-∞=⎰,和f(x)dx p ι+∞'=⎰ 由(1)得:W=m-l p '以W 为目标函数是否合适?由于轧钢的最终产品是成品材,浪费的多少不应以每粗轧一根钢材的平均浪费量为标准,而应该用每得到一根成品材浪费的平均长度来衡量。

因此目标函数为:W mJ P P ι==-''因为ι是已知的常数,所以目标函数可以等价的取为:mJ(m),(2)P (m)='其中P (m)=p(x)dx ι∞'⎰,22(x-m)-2eP(X)=σ易见J(m)平均每得到一根成品钢材所需要的刚才长度,问题就转化为求m 使J(m)达到最小。

令x mmy ,,,ιμλσσσ-===则(2)式可表为:(-Z)J()J(Z),(Z=-)(-)(Z)σμσλμλμφλμφ-===其中:2y -2z(Z)=(y)dy,(y)=2φφ∞ψ⎰π可用微分法解J (Z)-的极值问题。

不难推出最优值Z 应满足方程: (Z)Z (Z)φλ=-ψ (*)记(Z)F(Z)=(Z), φψ)(Z F 可根据标准正态分布的函数值φ和ψ制成表格式给出图形。

由上表可得方程(*)的根Z*注:当给定λ>F (0)=1.253时,方程(*)不止一个根,但是可以证得,只有唯一负根Z*<0,才使J (Z)-取得极小值。

模型二、(美国)一个地区911应急服务中心在过去的一年内平均每月要收到171个房屋火灾电话,基于这个资料的,火灾率被估计为每月171次,下个月收到火灾报警电话只有153个,这表明房屋火灾率实际上实际上是减少了,或是或是它只是一个随机波动?分析:Xn ——第n-1次和第n 次火灾之间的时间(月),X1…,Xn ,…是独立的且每一个Xn 服从参数为λ的指数分布,λ为报告的房屋火灾率(月),即是:i x i f(X )=e λ-λ,(Xi>0)目标:给定λ=171,确定每月收到153次这样的少的电话报警的概率有多大?或者说每月收到153是否属于正常范围内?建模:i x i f(X )=e λ-λ,λμ1)(==n X E ,221σλ=将11μσλλ==,代入得:(利用3σ原理): 若要有95%的把握,则:1222n nσ+++--≤≤若要有99%的把握,则:12...33n X X X n nσ+++--≤≤ 选择95%的把握得到: 1222...,(1)n n nn nX X X λλλλ-≤+++≤+将λ=171,n=153代入(1),有:1215315321531532153 (171171171171)X X X -≤+++≤+ 即:121530.75... 1.04X X X ≤+++≤因此我们的观察值12153...1X X X +++≈是在正常的变化范围之内 结论:断言火灾报警率降低的证据不充分,它可能是正态随机变量的正常结果。

当然,若每月都连续这样低,则需重新评估。

灵敏度分析:当λ=171代入(1)得:1222 (171171171171)n n n n n X X X -≤+++≤+ 因为对任何的[]n 147199∈,,区间2171n n±总会包含1,即在[]147199,之间都属于正常范围。

对于“每月171次”的假设的敏感性分析。

去掉特殊性,假设每月的均值是λ,我们有一个月的报警电话次数的观测值n=153,代入(1),有:1215315321531532153...X X X λλλλ-≤+++≤+ 因为对于任何的[]1281178λ∈,之间1532153λλ±总会包含1,所以λ=153属于正常的变化范围。

随机过程与数学建模基础知识部分随机过程:热噪声电压:电子元件或器件由于内部微观粒子的随机热骚动所引起的端电压称为热噪声电压。

它在任一时刻t 的值是一随机变量,记为V(t),不同时刻对应不同的随机变量,当时间在某区间,譬如在[]∞0,+上推移时,热噪声电压表现为一族随机变量,记为:{V(t),t>=0}。

由于热骚动的随机性,在相同条件下每次测量都将产生不同的电压——时间函数。

这样,不断的独立的测量就可以得到一族不同的电压——时间函数。

设T 是一无限实数集,我们把依赖于参数t T ∈的一族(无限多个)随机变量称为随机过程。

记为{X(t), t T ∈}。

这时每一个t T ∈,X(t)是一随机变量,T 叫做参数集。

把t 看作为时间,称X(t)为时刻t 时过程的状态,而X(t)=x 或是t=t1时过程处于状态x 。

对于一切的t T ∈,X(t)的所有可能的一切值的t V1(V2V3ttttt全体称为随机过程的状态空间。

马尔可夫链及其基本方程:将时间离散化为n=0,1,2,…对每个n ,系统的状态用随机变量Xn 表示,设Xn 可以取k 个离散的值Xn=1,2,…k ,且记i n a n P X i ()=(=)即状态概率从Xn=i~Xn+1=j 的概率记为 ij n n P P X j X i =+1(=|=),即转移概率。

如果1+n X 的取值只取决于Xn的取值及转移概率,而与X1,X2,…,Xn-1的取值无关,则称这种离散状态按照离散的时间的随机转移过程叫做马尔可夫过程。

或者说此过程具有马尔可性或无后效性。

注:还可以这样表示{}{}n n 12n-1n n n n n n P X x X x X x X x P X x X x x R≤=≤∈12-1-1-1|=,=,...,=|=,由状态转移的无后效性和全概率公式可以写出马尔可夫链的基本方程为ki j ij j a n a n P i 123k =∑=1(+1)=(),,,,..., (1) 并且i a n ()和ij P 应满足: i1an ,0,1,2,...0,1,,1,2,...,kij ij j n P P i j k==≥==∑∑ki=1()=1 (2)引入状态概率向量和转移概率矩阵12k a n a n a n a n P⨯ij k k ()=((),(),...,()),{P } 则(1)式可表为:a n+1()=a(n)p (3)由此可得 :a n n()=a(0)p (4)(2)式表明转移矩阵P 是非负矩阵,且P 的行和为1,称为随机矩阵。

说明:对于马尔可夫链模型最基本的问题是构造状态Xn 及写出转移矩阵P ,一旦有了P ,那么给定初始状态概率a (0)就可以用(3)和(4)或计算任意时段n 的状态概率a (n )模型一:人寿保险公司对受保人的健康状况特别关注,他们欢迎年轻力壮的人投保,患病者和高龄人则需付较高的保险金,甚至被拒之门外。

相关主题