当前位置:
文档之家› 四氧化三铁磁性纳米粒子 (1)
四氧化三铁磁性纳米粒子 (1)
表2 总铁盐浓度的影响
在固定反应温度为80 ℃,搅拌速度为1000 r/min,沉淀pH为9~10,铁盐总浓度 0.25mol/L研究分析了 Fe3+/Fe2+摩尔比为对产物尺寸的影响。
表3 Fe3+/Fe2+摩尔比
搅拌速度为1000 r/min,沉淀pH为9~10,铁盐总浓度0.25mol/L, Fe3+/Fe2+摩 尔比1:1研究了反应温度为对产物尺寸的影响。
表4 反应温度
溶液中铁盐溶液浓度为0.25mol/L,沉淀pH为9~10,Fe2+ 和Fe3+摩尔比为1:1的条件下,温度为80 ℃,考察了搅 拌速度对源自物尺寸的影响。表5 搅拌速度
2:溶胶凝胶法
表面覆盖了Fe3O4壳的C@Fe3O4芯壳纳米纤维
四、Fe3O4磁性纳米粒子的应用
四氧化 三铁磁 性纳米 粒子
磁记 录材
料
微波 吸收 材料
生物 医药
水体污 染物吸 附脱除 及贵金 属回收
催化剂 材料和 催化剂 载体
Fe3O4 纳米粒子在生物方面的应用
Fe3O4因其具有稳定的物料性质、与生物体能较好的相容、强度 较高,且具有磁性。目前,医学领域常采用超顺磁性的铁氧化物纳米 粒子来制备 MRI的造影剂,当这种造影剂进入活体后能够被活体组织 有效的吸收,通过比较不同组织部位的响应信号的差异,就能准确定 位出活体的病灶位置。在靶向药物载体方面,磁性靶向纳米药物载体 在负载药物的组分后通过外加磁场的作用可以直达病灶,减少了药物 对其他器官组织的副作用,同时还可以提高药效增强治疗作用。
5.2 制备
取15mL去离子水,加入40mg多巴胺盐酸盐配成溶液, 与10mL浓度为10mM的三羟甲基氨基甲烧溶液充分混 合后,加入20mL乙醇,将20mgFe3O4-槲皮素复合纳米粒 子加入其中,超声分散10min,搅拌20h,产物用强力磁 铁进行分离后,以去离子水冲洗多次直至洗液的pH为 7,再以无水乙醇洗漆,最后真空干燥后研磨。
纳米四氧化三铁靶向药物的制备及其抗肿瘤活性的研究
图6 自由基在引发肿瘤中的作用
槲皮素是一种很强的抗氧剂,可有效清除体内的氧自由基,这种抗氧化作用可 以阻止细胞的退化和衰老,阻止癌症的发生。研究表明槲皮素的抑制作用主要 来自于邻苯环的结构以及共辄双键的结构,这种结构具有消除自由基的能力。
图7 槲皮素的分子结构式
而可能是槲皮素的3和4位与纳米Fe3O4
产生化学键合。另外产物与Fe3O4相
比,590cm-1处的Fe3O4特征吸收减弱很 大,也证明了表面连接了槲皮素而不
图14 Fe3O4-槲皮素复合纳米粒子的红外光谱 图
是物质的物理混合。
图15 Fe3O4-槲皮素复合纳米粒子的SEM图
3、四氧化三铁-槲皮素-多巴胺复合纳米材料的制备
2.2 测试与表征
槲皮素中,酚羟基的伸缩振动在
3403cm-1左右,1662cm-1处是羟基的伸
缩振动,是苯环的弯曲振动640cm-1左
右。在产物的红外光谱图中,3403cm-1
附近也存在一个吸收峰,是由于酚羟
基伸缩振动而产生的,虽然位置并未
产生明显的漂移但是吸收峰明显变弱,
说明纳米Fe3O4与槲皮素不是物理混合,
图17 四氧化三铁-槲皮素-多巴胺 复合纳米粒子的水溶性
6.体外抗肿瘤活性研究
选用A549 (人肺腺癌细胞)、MDA-MB-231 (人乳腺癌细胞)、PC3 (人前列腺癌细胞)。用DMSO溶解后,加入PBS(-)配成1000ug/mL的溶 液或均匀的混悬液,然后用含DMSO的PBS(-)稀释,样品Q为槲皮 素,MDQ-1和MDQ-2分别为四氧化三铁-槲皮素-多巴胺复合纳米材料 两个批次样品。
Fe3O4 磁性纳米子粒
报告人:樊青波 组 员:王华、王欣
一、磁性纳米粒子的特性
磁性纳米粒子是指粒度在1~100nm之间的具有磁 性的粒子. 既具有量子尺寸效应、表面效应、 小尺寸效 应及宏观量子隧道效应等纳米粒子的特点,同时还具有不 同于常规纳米材料的特性,例如,当磁性纳米粒子的粒径 小于其超顺磁性临界尺寸时,粒子进入超顺磁性状态,无 矫顽力和剩磁,即粒子在磁场作用下能迅速被磁化, 撤 去外磁场后无剩磁,这种开/关磁性转换行为对于磁性分 离来说是一种特殊的优点 ,也是磁性粒子的一种最简单 的应用。
经过接种细胞—培养细胞—呈色—比色的步骤,最终观察细胞的 存活率。
槲皮素与磁性纳米四氧化三铁靶向体系结合,在病 灶部位通过外磁场对靶向药物进行磁导向,可能会 进一步提升槲皮素的在人体的吸收,用多巴胺对靶 向体系进一步进行修饰,由于肿瘤部位存在多巴胺 D2类受体,整个靶向体系具有高度的生物相容性,就 材料结构而言,多巴胺和槲皮素是并列地与纳米四 氧化三铁结合,而非多巴胺包覆的磁性槲皮素微囊, 保证了槲皮素分子顺利释放。
图18 四氧化三铁-槲皮素-多巴胺 复合纳米粒子的红外光谱图
图19四氧化三铁-槲皮素-多巴胺 复合纳米粒子的SEM图
图20 四氧化三铁-槲皮素-多巴胺 复合纳米粒子的TEM图
5.3 测试与表征
5.3.1产物的水溶性
由于槲皮素为黄色物质,而纳米 Fe3O4为黑色物质,两者均难溶于水, 因此Fe3O4-槲皮素纳米复合物为难 溶于水的棕色固体,但是通过在 Fe3O4-槲皮素纳米复合物负载具有 水溶性的多巴胺后,由于多巴胺为 白色物质,得到的产物Fe3O4-槲皮 素-多巴胺纳米复合物具有良好的 水溶性,颜色依旧为棕色,从颜色上 可以粗判断所得产物可能为预期产 物。
二、Fe3O4的结构和性质
纯净的四氧化三铁 是黑色固体(图1.1), 因为其特殊的晶体结 构以及Fe元素作为过 渡金屈元素所具有的 特性,故而具有磁性。
Fe3O4 是由Fe2+、Fe3+、O2-通过离 子键而组成的复杂离子晶体。离 子间的排列方式与尖晶石构型相 仿。Fe3O4 属于反尖晶石构型。即 1/2的Fe3+ 在四面体空隙中,而 Fe2+和其余1/2Fe3+离子在八面体 空隙中,故其构型可用 Fe(Ⅲ)[Fe(Ⅱ)Fe(Ⅲ)]O4来表示。 因为晶体中含有交替排列着的Fe2+ 和Fe3+,电子很容易因电场影响从 Fe2+转移到Fe3+,因而四氧化三铁具 有较高的导电性。
多巴胺具有多巴胺D2受体可以与多巴胺联合作用,相互作用起到抑制肿 瘤细胞。同时很强的水溶性,引入多巴胺后可显著提高药物水溶性。本 研究在前面获得的Fe3O4-槲皮素纳米复合物基础上,引入多巴胺,既可提 高药物的靶向性,也能提高药物的水溶性。
3.1实验原理
Fe2+的外层电子排布为3d64s04p0,Fe3+的外层电子排布为3d54s04p0,在纳 米Fe3O4的内部,存在很多Fe2+和Fe3+,它们的4s和4p都是空轨道。尽管与 槲皮素形成了配位,但多余的空轨道仍可与多巴胺中的具有sp3电子对的N 电子进一步形成配位键。
三、Fe3O4的制备
1.沉淀法
1.1 沉淀法的影响因素
考虑了pH、 Fe2+和Fe3+物质的量比、总铁盐浓 度、温度、搅拌速度对产物的影响。
在固定反应温度80℃,Fe3+/Fe2+的摩尔比为1:1, 搅拌速度为1000r/min,溶液中总铁盐的浓度为 0.25mol/L
表1 pH的影响
在固定反应温度为80℃,Fe3+/Fe2+摩尔比为1:1,搅拌速 度为1000 r/min,沉淀pH为9~10,分析了总铁盐的浓度 对产物尺寸的影响。
图8 槲皮素粉末
2.磁性纳米四氧化三铁靶向药物的制备 2.1 四氧化三铁-槲皮素复合纳米材料的合成
Fe2+的外层电子排布为3d64s04p0,Fe3+的外层电子排布为3d54s04p0, 在纳米四氧化三铁的内部,存在很多Fe2+和Fe3+,它们的4s和4p都是空轨 道。槲皮素分子中的羟基氧原子的外层电子排布为2p6,除和苯环及氢 原子相连的两个电子,还剩一个孤对电子,因此槲皮素羟基上的氧原子 活化后,可以提供孤对电子给Fe2+和Fe3+的空轨道,形成配位键结合。 Fe2+或者Fe3+的4s和4p轨道都是空轨道,能够接受孤对电子对,从而与两 个氧原子结合。
反应机理:
图13 槲皮素分子与Fe3O4的化学反应
实验过程 :
称取一定量的二水合槲皮素,溶解在100 mL甲醇中,充分溶解后,再加入一 定量的纳米Fe3O4,滴入少量氨水,使pH大于7,超声震荡,使其充分分散后,水 浴至一定的温度,机械搅 一定的时间,反应结束后,迅速取下圆底烧瓶,反应 物倒入烧杯,用磁场分离即可得到Fe3O4-槲皮素纳米复合物,用去离子水多 次洗涤产物,直至洗液pH为7,50 °C真空干燥。