一、带电粒子在无边界匀强磁场中运动1专项训练1.某种回旋加速器的设计方案如俯视图甲所示,图中粗黑线段为两个正对的极板,两个极板的板面中部各有一极窄狭缝(沿OP 方向的狭长区域,),带电粒子可通过狭缝穿越极板(见图乙),极板A 、B 之间加如图丙所示的电压,极板间无磁场,仅有的电场可视为匀强电场;两细虚线间(除两极板之间的区域)既无电场也无磁场;其它部分存在垂直纸面向外的匀强磁场.在离子源S 中产生的质量为m 、带电荷量为q 的正离子,飘入电场,由电场加速后,经狭缝中的O 点进入磁场区域,O 点到极板右端的距离为0.99D ,到出射孔P 的距离为5D .已知磁感应强度大小可调,离子从离子源上方的O 点射入磁场区域,最终只能从出射孔P 射出.假设离子打到器壁即被吸收,离子可以无阻碍的通过离子源装置.忽略相对论效应,不计离子重力,0.992≈1.求: (1)磁感应强度B 的最小值; (2)若磁感应强度62mUB D q =,则离子从P 点射出时的动能和离子在磁场中运动的时间;(3)若磁感应强度62mUB D q=,如果从离子源S 飘出的离子电荷量不变,质量变为原来的K 倍(K 大于1的整数),为了使离子仍从P 点射出,则K 可能取哪些值.【答案】225mU D q 33962D m qUπ K =9,n =25;K =15,n =15;K =25,n=9;K =45,n =5;K =75,n =3;K =225,n =1 【解析】 【详解】(1)设离子从O 点射入磁场时的速率为v ,有2102qU mv =-设离子在磁场中做匀速圆周运动的轨迹半径为r ,2v qvB m r=若离子从O 点射出后只运动半个圆周即从孔P 射出,有2r =5D 225mUD q(2)若磁感应强度62mUB D q=,正离子在磁场中的轨道半径16r D =,经分析可知离子在磁场中运动半圈后将穿过上极板进入电场区域做减速运动,速度减小到零后又重新反向加速到进入时的速度,从进入处到再次回到磁场区域,因为16r D=,这样的过程将进行2次,然后第3次从极板右边界进入虚线下方磁场并进入电场区域被加速,如图所示,若离子绕过两极板右端后被加速了n 次,则此时离子运动的半径为被加速了(n +1)次对应的半径11n n mv r qB++=.离子从孔P 射出满足的条件 11425n r r D ++=解得n +1=132,即离子从静止开始被加速169次后从P 点离开,最大动能2max 13169k E qU qU == 在磁场中的总时间t =169.5T , 因为32DmT qUπ=可得33962D mt qUπ=;(3)若离子电荷量为q ,质量变为Km ,设在电场中被加速一次后直接进入磁场的半径为r K ,在电场中被加速n 次进入磁场的半径为r n ,则1K r Kr =,1n r Knr =,其中16r D=,由上面1K r Kr =知,K 越大,离子被加速一次后直接进入磁场半径越大,由(2)问知,分三种情况讨论:情况一:在电场中被加速三次后(即第三个半圆)越过极板右侧:如图,此时,要满足的条件为:2×2r K <0.99D ①同时2×2r K +2r n =5D ②由①知:K <2.2,因为K >1的整数,故K =2,代入②知:22158602n =+-,由于n 要求取整数,情况一中n 不存在.情况二:在电场中被加速二次后(即第二个半圆)越过极板右侧:如图,此时,要满足的条件为2r K <0.99D ①2×2r K ≥0.99D ② 2r K +2r n =5D ③由①②知2.2≤K <9,由③知:21530Kn K K +=-,当K 分别取3、4、…8时,n 不可能取整数,情况二也不存在. 情况三:在电场中被加速一次后(即第一个半圆)直接越过极板右侧:如图,此时,要满足的条件2r K ≥0.99D ①2r n =5D ②由①知:K ≥9,由②知:Kn =152=3×5×3×5,故K 可能有6组取值,分别为:K =9,n =25;K =15,n =15;K =25,n =9;K =45,n =5;K =75,n =3;K =225,n =1.2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性碰撞,A 的电量保持不变,P 、A 均可视为质点.(1)若A 从ed 边离开磁场,求k 的最大值;(2)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)1(2)57k =或13k = ;A 球在磁场中运动的最长时间32m qB π【解析】 【详解】(1)令P 初速度qBLv m=,设P 、A 碰后的速度分别为v P 和v A , 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 可得:A 21k qBL v k m=⋅+,可知k 值越大,v A 越大; 设A 在磁场中运动轨迹半径为R , 由牛顿第二定律:2A A mv qvB R= 可得:A mv R qB =,可知v A 越大,R 越大;即21kR L k =+,k 值越大,R 越大; 如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 可得:A qBLv m=,求得k 的最大值为1k =(2)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有()222 1.52L R L R ⎛⎫=+- ⎪⎝⎭解得:56L R =可得:57k = (II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.令电场强度26qB LE m=;如图3和如图4,由几何关系有:2223322L R R L ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭解得:58L R =或2LR = 可得:511k =或13k = 当58L R =时,A 58qBR qBL v m m ==,由于2A 175264mv qEL qEL ⋅=> 当2L R =时,A 2qBR qBL v m m ==,由于2A 1324mv qEL qEL ⋅=<此类情形取2L R =符合题意要求,即13k = 综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k = 或13k = A 球在磁场中运动周期为A 22R mT v qBππ== 当k =13时,如图4,A 球在磁场中运动的最长时间3342T m t qB π==3.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=⨯kg 电荷量193.210q -=⨯C 、速度61.010v =⨯m/s 的带正电的粒子。
一感光薄板平行于x 轴放置,其中心O '的坐标为(0,a ),且满足a >0. 不考虑粒子的重力以及粒子之间的相互作用。
(1)若薄板足够长,且a =0. 2m ,求感光板下表面被粒子击中的长度; (2)若薄板长l =0. 32m ,为使感光板下表面全部被粒子击中,求a 的最大值;【答案】(1)13m + (2)0.32m 【解析】 【分析】(1)带电粒子在磁场中做匀速圆周运动,洛伦兹完全提供向心力,粒子速度大小一定,方向不定,采用旋转圆的方式确定临界点;(2)作出粒子恰能击中板的最左端与最右端时粒子的轨迹,求出a 的最大值。
【详解】(1)带电粒子在匀强磁场中做匀速圆周运动,洛伦兹完全提供向心力:2v qvB m r=解得:0.2m r =沿y 轴正方向发射的粒子击中薄板的最左端D 点,可知:10.2m x r ==而击中薄板最右端E 点的粒子恰好运动了半个圆周,由几何关系可得:2222(2)r x r +=解得:23x =则感光板下表面被粒子击中的长度:1213L x x +=+=(2)粒子恰能击中薄板的最左端点,由几何关系可知:222()()2la r r +-= 解得:0.32m a =若粒子恰能击中薄板的最右端点,根据几何知识可知:222()(2)2la r +=解得:0.1344m 0.32m a =>综上所述,为了使感光板下表面全部被粒子击中:0.32m m a =【点睛】典型的旋转打板模型,粒子的速度一定,说明运动的轨迹是一个定圆,方向不同,可以采用旋转圆的方式画出临界点,进而求解。
4.地磁场可以减少宇宙射线中带电粒子对地球上生物体的危害.为研究地磁场,某研究小组模拟了一个地磁场.如图所示,模拟地球半径为R,地球赤道平面附近的地磁场简化为赤道上方厚度为2R 、磁感应强度大小为B 、方向垂直于赤道平面的匀强磁场.磁场边缘A 处有一粒子源,可在赤道平面内以不同速度向各个方向射入某种带正电粒子.研究发现,当粒子速度为2v 时,沿半径方向射入磁场的粒子恰不能到达模拟地球.不计粒子重力及大气对粒子运动的影响,且不考虑相对论效应.(1)求粒子的比荷q m; (2)若该种粒子的速度为v ,则这种粒子到达模拟地球的最短时间是多少?(3)试求速度为2v 的粒子到达地球粒子数与进入地磁场粒子总数比值η.(结果用反三角函数表示.例:sin k θ=,则sin arc k θ=,θ为弧度)【答案】(1)2q vm BR =(2)min 23R t vπ=(3)2arcsin 3π【解析】试题分析:(1)其轨迹如图1所示(和地球相切)设该粒子轨迹半径为r ,则根据几何关系:()()2223r R r R +=+① 解得4r R =②又2(2)(2)v q v B m r=③ 由②③得,2q v m BR=④ (2)速度为v 的粒子进入磁场有:2v qvB m r ='⑤ 由④⑤得,2r R '=⑥若要时间最短,则粒子在磁场中运动的弧长最短,故从A 斜向上射入,在A 交点E 到达地球的弦长最短时间最短.2AE AD DE R ===,故60ADE ∠=︒,得:0min0602360m t qB π=⋅,min 23R t vπ= (3)沿径向方向射入的粒子会和地球相切而出,和AO 方向成θ角向上方射入磁场的粒子也恰从地球上沿相切射出,在此θ角范围内的粒子能到达地球,其余进入磁场粒子不能到达地球.作A 点该速度垂直和过切点与O 点连线延长线交于F 点,则F 点为圆心,如图3.AF=4R,AO=OF=3R,得2 sin3AGAOθ==故θηπ=,2arcsin3ηπ=考点:考查了带电粒子在有界磁场中的运动【名师点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式mvRBq=,周期公式2mTBqπ=,运动时间公式2t Tθπ=,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,5.如图1所示,左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。