第17卷 第2期厦门理工学院学报V o.l 17 N o .22009年6月Journal o f X ia m en U n i versity o f T echno l ogy Jun .2009[收稿日期]2009-03-12 [修回日期]2009-05-11[基金项目]厦门市科技计划指导性项目(3502Z20077016)[作者简介]孙凤琴(1982-),女,福建莆田人,助教,硕士,从事海洋与环境遥感的研究.厦门环东海域整治过程悬浮泥沙变化遥感监测孙凤琴(厦门理工学院空间信息科学与工程系,福建厦门361024)[摘 要]选用2005)2007年福建省干季(10月~2月)三个时相中潮位的中巴卫星CCD 数据,利用泥沙指数SI=(ch2+ch3)/(ch2/ch3)提取厦门环东海域悬浮泥沙信息.与现场浊度的对比表明,该泥沙指数能较好地反映悬浮泥沙的相对分布.泥沙指数图像显示,该海域悬浮泥沙浓度分布具有浅海高、深海低,从两岸向中部降低的特点;与2005年10月相比,2007年1月整治过程中清淤吹填使海域面积有所减小,但湾中上部高、中高浓度泥沙明显增加;到2007年11月,清淤吹填基本完成,海域高、中高浓度悬浮泥沙总比2005年10月约减少14k m 2.综合整治使得整个环东海域悬浮泥沙含量明显降低.[关键词]厦门环东海域;遥感;悬浮泥沙;泥沙指数[中图分类号]P73111 [文献标志码]A [文章编号]1008-3804(2009)02-0062-050 引言悬浮泥沙含量影响水体透明度、水色等性质,其变化对生态环境、水下地貌冲淤、港口工程等有直接影响[1].遥感具有大面积、同步测量和时空分辨率较高的特点,可有效地监测悬浮泥沙的分布.Ruhl等[2],Ty l e r 等[3],Sipe l g as 等[4]利用不同资料在美国、欧洲、非洲进行了悬浮泥沙浓度的反演.国内学者也利用MODIS 和中巴CCD 影像等研究了沿海和内陆湖泊的悬浮泥沙浓度[5-7].研究者们提出了许多的反演模式[8],但这些模式针对不同水域范围而建立,在其他水域难以普遍适用.李四海等[9]指出,泥沙指数法综合应用了不同波段的光谱信息,可获得层次丰富泥沙图像.文中以厦门环东海域为研究区域,利用多时相的中巴CCD 遥感资料,基于泥沙指数提取悬浮泥沙信息,探讨海域建设对悬浮泥沙和冲淤环境的影响.1 研究区域介绍厦门地处福建省东南沿海.海峡西岸经济区列入国家/十一五0规划,给厦门带来前所未有的发展机遇,但岛内土地资源稀缺,成为制约厦门发展的软肋.开发环东海域成为厦门市提升未来发展空间的重要战略.环东海域新城区(见图1),陆域规划面积114km 2,海域面积91km 2,沿岸入海河流有东、西溪和官浔溪,径流比较小[10].整治前,由于长期的填海造地和围垦养殖,该海域污染严重,存在大面积淤积浅滩.环东海域整治工程,主要包括清淤吹填、产业第2期孙凤琴:厦门环东海域整治过程悬浮泥沙变化遥感监测区建设等内容.2006年7月,清淤吹填工程开始;至2007年2月,清淤吹填集中在丙洲片区(位于同安区,由官浔、西柯和丙洲地块组成)和洪塘片区(位于同安湾北部,泉厦漳高速公路以南、东溪以东).一系列建设过程,必将引起环东海域悬浮泥沙分布及冲淤环境的明显变化.2 数据选择与研究方法211 数据选择为了使中巴卫星(CBERS)CCD 数据具有可比性,主要考虑数据在干/湿季和潮位时相两方面的选择.在季节方面,径流携沙量与降水有密切关系.根据多年降水量的气候平均,福建省3月~9月份为湿季,10月~2月份为干季,干季海湾受径流携沙影响较湿季的小.在潮位方面,近岸海域的潮流对悬浮泥沙的影响显著.通常悬沙浓度在较低潮位时较高,而在较高潮位时较低.结合数据资料,选择干季相近潮位的3幅遥感图像来分析.所用遥感数据的相关情况来自厦门日报,如表1所示.表1 所用中巴CCD 遥感数据的日期/潮时/风况Tab .1 The da t e /tide tm i e /w ind o f CCD data from CBERS数据日期2005年10月21日2007年01月06日2007年11月28日农历日期九月十九日十一月十八日十月十九日高潮时刻14.5014.3515.05低潮时刻8.308.008.30风况东北风3-4级东北风3级东北风3-4级212 遥感影像预处理主要包括几何校正和大气辐射校正.(1)地理校正:保证数据的准确性和不同时相数据的可比性.采用影像到影像的配准:以已校正到厦门市1B 5万地形图的2001年TM 影像为基准,将各CCD 影像配准到该T M 影像上,采用二次多项式变换,双线性内插法重采样.满足多时相遥感变化检测误差小于015个像元的要求.(2)大气校正:由于水体辐射信号较弱,受大气影响大,进行大气校正是必需的.过去20多年已经发展了许多大气校正模型[11].鉴于本研究区域小,所选图像晴空无云,可认为各点大气影响基本一致.因此,采用较为常用的最暗像元法进行大气校正[12].213 海域水体信息提取要提取悬浮泥沙信息,必需先获得准确的水域范围.根据/水体对近红外波段强烈吸收,而对绿光波段有较高的反射0的光谱特性,M c Feeters[13]构建的水体指数NDW I 能很好地剔除非水体信息:ND W I=(G reen-N I R )/(G reen+N I R)式中,G reen 和N I R 是绿光波段和近红外波段的反射率,对应CCD 数据图像的第2和4波段.通常,NDW I 以0为阀值,水体的为正值,土壤和植被的为负值.考虑到研究区域落潮时有泥滩存在,因此根据各图像情况,确定ND W I 阈值,使陆地和泥滩不参与泥沙信息提取.214 泥沙指数计算LandsatTM /ET M +绿波段0152~0160L m 和红波段0162~0169L m 对悬浮泥沙的灰度响应曲线表明,这两波段的灰度可以反映水体泥沙含量的差异[7].中巴CCD 第2、3波段正适合于提取水中悬浮泥沙信息,因此拟定泥沙指数为:SI=(ch2+ch3)/(ch2/ch3),利用E rdas817进行运算,得到不同时相遥感泥沙指数的分布图.3 环东海域悬浮泥沙分布特征分析311 泥沙指数与现场浊度的对比中巴卫星平均降交点地方时为10:30a m,取现场准同步的浮标浊度进行比较.浮标位置见图3(c)所示:绿色点(N118b 081789c ,E24b 371002c )和紫色点(N118b 101913c ,E24b 341668c ).#63#厦门理工学院学报2009年2005)2007年泥沙指数SI 与相应浊度对比,如图2所示.从图2可知,SI 与浮标浊度两者的变化趋势基本一致.二者在2007年11月28日B 点出现较大差异,浊度为低值,SI 为相对高值.查看当日的遥感图像,第三波段比其他日期大幅上升,使得SI值整体较高,但在该图像中,该S I 值仍代表相对的低值.说明该泥沙指数不是真正的泥沙浓度,但能较好的反映悬浮泥沙相对含量的分布.312 不同时相悬浮泥沙分布的对比图3(a)(b)(c)分别为日期20051021、20070106、20071128的中巴CCD 遥感图像,由第4、第2和第1波段合成.从图3三幅图像可看出2005)2007年环东海域建设的变化:图3(b)与图3(a)相比,工业区初现规模;在图3(c)上,各处的建设明显扩大,丙洲岛南端和环湾路建设展开.图3(c)与图3(a)相比,海陆变化如图4所示,黑色表示水域转为陆域或淤积,白色表示陆域或淤积转为水域,海转陆/淤面积约16km 2.为了划分不同悬浮泥沙浓度的水体,采用以下的指标作为标准(M 代表平均值,D 代表标准方差)[7]:SI>M +D,高浓度悬浮泥沙;M <SI [M +D,中高浓度悬浮泥沙;M -D <SI [M,中低浓度悬浮泥沙;M I N <SI [M -D,低浓度悬浮泥沙.图5(a)(b)(c)分别为日期20051021、20070106、20071128的泥沙指数图像.从图5三幅泥沙指数图像可看出:1)以图5各图中红线为界,在湾口存在中高浓度悬浮泥沙.从其分布来看,不是从湾内而来,应是相邻海蚀海岸及堆积海滩形成近岸较高浓度悬沙,由潮流挟带至此.2)在红线以北的湾内,高浓度悬浮泥沙主要位于湾顶和沿岸滩涂附近,而在湾中部为低悬浮泥沙带.同安湾四周潮滩宽阔,多为粉砂质砂和泥质粉砂;潮汐通道发育在刘五店)大离亩以北海域[10].粉砂潮滩在流浪作用下易形成悬浮泥沙,与湾内高悬沙区相对应;潮汐通道水深较大,对应悬浮泥沙浓度较低.图5(a)~(c)三幅图像也反映出2005)2007年湾内泥沙分布有个明显变化的过程.图5(b)与图5(a)相比,湾中上部高浓度和中高浓度泥沙明显增加,但在机场附近有所降低,总体上高浓度和中低浓度面积分别增加018km 2和613km 2,中高浓度和低浓度面积分别减少117km 2和717km 2.在图5(c)图像中,高浓度和中高浓度悬浮泥沙仅存在湾顶和近岸区域,与图5(b)相比,高、中高和中低浓度的面积分别减少513km 2、812km 2和215k m 2,低浓度的增加514km 2;而图5(c)与图5(a)相比,则高、中高和低浓度的泥沙分别减少415km 2、919km 2和213km 2,而中低浓度增加318km 2.#64#第2期孙凤琴:厦门环东海域整治过程悬浮泥沙变化遥感监测引起2005)2007年环东海域悬浮泥沙变动的主要原因,是海域的整治过程.具体分析如下:1)从表1可知,所选的三个时相卫星数据的日期都在干季,径流输沙的影响相似,范围较小.2)从表1还可知该三个时相数据的高低潮时刻.根据中巴卫星平均降交点地方时(10B 30a m )和厦门正规半日潮的规律,可判断三个时相遥感CCD 数据(图3(a)~(c))都是接近高低潮中间的中潮位期,且农历为十八日和十九日,潮位高(水深)相近,风况均为东北风3-4级.在这三个时相,径流输沙、水深、风况、流速、浅滩底质等条件相似,决定了悬浮泥沙的大体分布,但不会引起这三个时相间悬浮泥沙分布的大幅度变化.3)海域的综合清淤吹填工程起于2006年7月,至2007年2月,清淤吹填主要位于湾顶的丙洲片区和洪塘片区,其影响正是图5(b)中湾中上部悬浮泥沙明显增加处.小部分海转陆,也减少了近岸高浓度泥沙的面积,如机场和丙洲岛周围;至8月,清淤吹填进入尾声,对湾底泥沙的搅动减少,且清淤结束后,浅滩水深增加,因此,11月的图5(c)中整个环东海域悬浮泥沙含量明显降低.4 结语选用2005)2007年间福建省干季(10月~2月)三幅潮位相近的中巴CCD 图像,通过泥沙指数获得了这期间环东海域悬浮泥沙的变化.总体上,环东海域悬浮泥沙受水下地形地貌和潮流的影响,分布具有浅海区浓度高,深海区浓度低,从岸边向海域中部逐渐降低的特点.在径流输沙,水深、风况、流速、浅滩底质等条件相似的情况下,海域整治的清淤吹填是引起悬浮泥沙浓度变化的主要原因.总体上,综合整治使得环东海域悬浮泥沙含量明显降低.致谢:感谢福建省空间信息工程研究中心提供中巴CCD 数据;感谢厦门市水产研究所提供浮标浊度数据以及蔡励勋工程师的支持.[参考文献][1]程天文,赵楚年.我国主要河流入海径流量、输沙量对沿岸的影响[J].海洋学报,1985,7(4):460-471.[2]RUH L C A,SC HOELLHAM ER D H,STUM PF R P et a.l Co m b i ned use o f re m ote sensing and conti nuous m on ito -r i ng to analyse the var i ability of suspended-sed i m ent concentrati on in san Franc isco bay Californ i a [J].E stuarine ,C oasta l and Shelf Sc i ence ,2001,53:801-812.[3]TYLER A N,S VA B E ,PRESTON T et a.l R emo te sensi ng of t he wa ter qua lity o f shall ow lakes :A m i x t ure m ode-lli ng approach to quantif y ing phytoplankton i n w ater character i zed by h i gh -suspended sed i m ent [J].Internati ona l Journa l o f R e -m ote Sensing ,2006,27(8):1521-1537.#65#厦门理工学院学报2009年[4]S I PELGAS L,RAUD SEPP U,KOUTS T.Operati ona lm onito ri ng o f suspendedm a tter d istri buti on usi ngM OD IS i m a -ges and nu m er i ca lm ode lli ng [J].A dvances i n Space R esearch ,2006,38(10):2182-2188.[5]张春桂,张星,陈敏艳,等.福建近岸海域悬浮泥沙浓度遥感定量监测研究[J].自然资源学报,2008,23(1):150-160.[6]邬国锋,崔丽娟,纪伟涛.基于时间序列M OD IS 影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化[J].湖泊科学,2009,21(2):288-297.[7]王心源,李文达,严小华,等.基于L andsat TM /ETM +数据提取巢湖悬浮泥沙相对浓度的信息与空间分布变化[J].湖泊科学,2007,19(3):255-260.[8]刘志国,周云轩,蒋雪中,等.近岸Ò类水体表层悬浮泥沙浓度遥感模式研究进展[J].地球物理学进展,2006,21(1):321-326.[9]李四海,恽才兴.河口表层悬浮泥沙气象卫星遥感定量模式研究[J].遥感学报,2001,5(2):154-160.[10]林桂兰,方建勇,陈峰.厦门同安湾滩槽演变趋势的遥感分析[J].国土资源遥感,2004,62(4):63-67.[11]郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004(4):66-70.[12]SONG C ,W OODCOCK C E ,SETO K C ,e t a.l C lassificati on and change detecti on us i ng landsat TM data :when and how to correct at m ospheric effects [J].R e m ote Sensing o f Environment ,2001,75(2):230-244.[13]M cF ee ters S .T he use of the nor m a lized difference w ater index (NDW I)i n the de li nea ti on o f open w ater features[J].Internationa l Journa l of R emo te Sensi ng,1996,17(7):1425-1432.R e m ote Sensi ngM onitori ng of Suspended Sedi m ent Change i nX i a m en East Coastal HarnessS UN Feng -q i n(D epart m ent of Spa tia l Infor m a tion T echnology ,X ia m en U niversity of T echnology ,X ia m en 361024,Ch i na)A bstract :CBERS CCD data o f dry season fro m 2005to 2007w ere chosen to i n d icate the suspended sed-i m ent change in X ia m en East coastalw ater area in t h ese years .Sed i m ent I ndex SI=(ch2+ch3)/(ch2/ch3)w as used to indicate w ater w ith different sed i m ent levels .C o mpared w ith buoy turbidity ,S I sho w ed related d is -tri b ution of suspended sed i m ent w el.l According to S I i m ages ,suspended sedi m ent concentration w as generall y lo w i n shoa l and h i g h in deep affected by t h e physi o gno m y and current i n th is area .The silt purge and filli n g in Jan.2007reduced the sea area and i n creased suspended sed i m ent at upper and upper m i d dle levels i n northern and w estern bays ,and i n Nov 12007,near the end of the silt pur ge and filli n g ,suspended sedi m ent at upper and upper m iddle leve ls decreased about 14km 2co mpared w ith that i n O ct 12005.I n genera,l X i a m en E ast coastal area harness has v isibly reduced the suspended sed i m ent concen trati o n .K ey words :X ia m en East coastal area ;re m ote sensi n g ;suspended sedi m en;t sed i m ent para m eter #66#。