高考物理专题汇编带电粒子在电场中的运动(一)一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+ 【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A在D点时,下壁对球的支持力20v F m r==由牛顿第三定律,F F =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:21=解得1t = 小球在圆管内做匀速圆周运动的时间为t 2,则:2324A rt v π⋅==小球离开管后做类平抛运动,物块从B 到N的过程中所用时间:3t = 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图所示,OO′为正对放置的水平金属板M 、N 的中线,热灯丝逸出的电子(初速度、重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e 。
求:(1)电子通过小孔O 时的速度大小v ;(2)板间匀强磁场的磁感应强度的大小B 和方向。
【答案】(1)2eUm(2)12mU L e 方向垂直纸面向里【解析】 【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU mv = 解得:2eUv m=(2)两板间电场的电场强度大小为:2UE L=由于电子在两板间做匀速运动,故:evB eE = 解得:12mUB L e=根据左手定则可判断磁感应强度方向垂直纸面向外.5.如图所示,内壁光滑、半径大小为R 的绝缘圆轨道固定在竖直面内,圆心为O 轨道左侧与圆心等高处附近空间有一高度为d 的区域内存在着竖直向下的匀强电场(d<R),电场强度E=2mgRqd。
质量为m 带电量为+q 可视为质点的小球,在与圆心等高的A 点获得竖直向上的初速度v 0,小球刚好能通过轨道最高点B 。
(重力加速度为g)求:(1)小球初速度v 0的大小;(2)小球第3次经过轨道最低点时对轨道的压力。
【答案】3gR (2) 9mg ,方向竖直向下 【解析】 【分析】小球恰好能经过轨道最高点B ,由牛顿第二定律求出B 的速度,从A 运动到B ,对小球由动能定理求出小球初速度v 0的大小;对小球由动能定理得小球第三次经过轨道最低点时的速度大小,在最低点时,由牛顿第二定律和牛顿第三定律求得小球对轨道的压力; 【详解】解:(1)小球恰好能经过轨道最高点B由牛顿第二定律有:2Bv mg m R=从A 运动到B ,对小球由动能定理得:2201122B mgR mv mv -=- 解得:03v gR =(2)设小球第三次经过轨道最低点时的速度为v 对小球由动能定理得:22011322qEd mgR mv mv +=- 在最低点时,由牛顿第二定律有:2N v F mg m R-=解得:9N F mg =由牛顿第三定律得:小球对轨道的压力9N F mg '=,方向竖直向下6.如图所示,x 轴的上方存在方向与x 轴成45o 角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45o 角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E,三个过程的总时间即为总时间.【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB mR=,半径0.4mvR mBq==,根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90o,则第一次经过x轴时的横坐标为120.420.57x R m m==≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R,在垂直电场方向的位移11s vt=,运动时间4112410s Rt sv v-===⨯在沿电场方向上的位移22112s at=,又因22s R=得722212110/sa m st==⨯根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.7.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+8.如图所示,粗糙的斜槽轨道与半径R=0.5m 的光滑半圆形轨道BC 连接,B 为半圆轨道的最底点,C 为最高点.一个质量m=0.5kg 的带电体,从高为H=3m 的A 处由静止开始滑下,当滑到B 处时速度v B =4m/s ,此时在整个空间加上一个与纸面平行的匀强电场,带电体所受电场力在竖直向上的分力大小与重力相等.带电体沿着圆形轨道运动,脱离C 处后运动的加速度是a=23m/s 2,经过一段时间后运动到斜槽轨道某处时速度的大小是v=2m/s .已知重力加速度g=10m/s 2,带电体运动过程中电量不变,经过B 点时能量损失不计,忽略空气的阻力.求:(1)带电体从B 到C 的过程中电场力所做的功W (2)带电体运动到C 时对轨道的压力F (3)带电体与斜槽轨道之间的动摩擦因数μ【答案】(1)5J (2)16N (3) 11345【解析】 【分析】 【详解】(1)设带电体受到电场力的水平分量为F x ,竖直分量为F y ,带电体由B 到C 的运动过程中,水平分力做功为零,竖直分力做功等于重力做功. 即:W =F y •2R =mg •2R =5J(2)带电体从B 到C 运动的过程中,重力和电场力的竖直分力相等,电场力的水平分力不做功,所以v C =v B =4m/s在C 点,由牛顿第二定律得:2y v F mg F m R+-=又mg =F y联立解得:F =16N(3)带电体脱离轨道后在水平方向上做匀减速直线运动,由速度位移公式得:222C v v ax -=代入数据得:3x π=设斜面与水平面的夹角为α,则23tan R x α==解得:α=30°带电体从A 到B 的运动过程中,由动能定理的:mgH ﹣μmgcos αsin H α=212B mv 代入数据解得:11345μ=9.如图所示,空间存在水平方向的匀强电场,带电量为的绝缘滑块,其质量m =1 kg ,静止在倾角为θ=30°的光滑绝缘斜面上,斜面的末端B 与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度v 0=3 m/s ,长L =1.4 m .今将电场撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g =10 m/s 2.(1)求匀强电场的电场强度E ;(2)求滑块下滑的高度;(3)若滑块滑上传送带时速度大于3 m/s ,求滑块在传送带上滑行的整个过程中产生的热量.【答案】(1)1000N/C ,方向水平向左 ;(2)0.8m ;(3)0.5J. 【解析】试题分析:(1)根据题意滑块在电场中应满足:tan Eq mg θ= 得:tan 1000/mg E N C qθ== 即大小为1000N/C ,方向水平向左 (2)在水平传送带上:代入数据得:a=0.5m/s 2若滑块自B 点匀加速到C ,则:代入数据得:由动能定理得:整理得:h 1=0.1m若滑块自B 点匀减速到C ,则:代入数据得:v B2=4m/s由动能定理得:整理得: h 2=0.8m(3)根据题意,物块在传送带上应满足:,且24/B v m s =整理得:t=0.4s该时间段内传送带传送距离满足: 整理得:x=1.2m 根据能量守恒可知:代入数值得:Q=0.5J考点:牛顿第二定律的综合运用.10.如图所示,y ,N 为水平放置的平行金属板,板长和板间距均为2d .在金属板左侧板间中点处有电子源S ,能水平发射初速为V 0的电子,电子的质量为m ,电荷量为e .金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽 度均为d .磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d 处有一个荧光屏.过电子源S 作荧光屏的垂线,垂足为O .以O 为原点,竖直向下为正方向,建立y 轴.现在y ,N 两板间加上图示电压,使电子沿SO 方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)(1)电子进人磁场时的速度v ;(2)改变磁感应强度B 的大小,使电子能打到荧光屏上,求 ①磁场的磁感应强度口大小的范围; ②电子打到荧光屏上位置坐标的范围. 【答案】(1)02v ,方向与水平方向成45° (2)①()012mvB ed+<,②4224d d d -→【解析】试题分析:(1)电子在MN 间只受电场力作用,从金属板的右侧下边沿射出,有(1分) (1分) (1分)(1分)解得(1分)速度偏向角(1分)(1分)(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值0B ,此时电子在磁场中作圆周运动的半径为R(2分) 又有20mv qvB R=(2分)由⑦⑧解得:00(12)mB +=(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)mB v ed+<时电子能打在荧光屏上(得0(12)mB v ed≤不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,即. (1分)出射点位置到SO 连线的垂直距离12sin 45y d R =-︒(1分)电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标021tan 45y y d =+(1分)解得2422y d d =-(1分)当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标为033tan 454y d d d =+=(1分)电子穿出磁场后打在荧光民屏上的位置坐标范围为:422d d -到4d (2分)考点:带电粒子在磁场中受力运动.11.如图(a)所示,在空间有一坐标系xoy ,直线OP 与x 轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界,OP 上方区域Ⅰ中磁场的磁感应强度为B ,一质量为m ,电荷量为+q 的质子(不计重力及质子对磁场的影响)以速度v 从O 点沿与OP 成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直于x 轴进入第四象限,第四象限存在沿-x 轴方向的特殊电场,电场强度E 的大小与横坐标x 的关系如图(b )所示,试求:X /×Bqmv EoBv 23 Bv 21(1)区域Ⅱ中磁场的磁感应强度大小 ; (2)质子再次到达y 轴时的速度大小和方向。