当前位置:文档之家› 王轲钢结构外文翻译

王轲钢结构外文翻译

毕业设计外文资料翻译原文题目:Eurocode 3:Design of steel structures译文题目:英国钢结构规范(第六章)院系名称:土木建筑学院专业班级:土木工程0807班学生姓名:王轲学号:200848040702指导教师:陈东兆教师职称:副教授附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文钢结构规范6 承载能力极限状态6.1 常规规定(1) 在2.4.3章中规定的局部因数γM在本章中适用于不同阻力的特征值,如下:γM0 ------ 任意等级的截面抗力γM1 ------ 构件裂缝γM2 ------ 截面断裂抗力接头抗力详见EN 1993-1-8注解1 :其他推荐数值参见93英国规范第二章到第六章;对于未在93英国规范第二章到第六章国家附录中提到的结构可以定义局部因数为γMi;宜在EN 1993-2中找到局部因数γMi. 注解2B:建筑物局部因数γMi可以在国家附录中定义,下面的数值对建筑物宜选用: γM0=1.00γM1=1.00γM2=1.256.2 截面抗力6.2.1 常规规定(1) 各截面单一动力荷载设计值不能超过相应的设计抗力;如果多个动力荷载同时作用,合力不能超过组合抗力.(2) 剪力滞后效应和局部屈曲效应应该包括有效宽度,根据EN 1993-1-5.剪力屈曲效应也应当根据EN 1993-1-5考虑.(3) 抗力设计值应该依据截面等级确定.(4) 依据弹性抗力进行的弹性验算可以适用于所有的截面等级,有效截面形式适用于第四等级截面.(5) 应用下面的公式对截面进行临界点的弹性屈服验算。

不适用下面公式的参见6.2.8到6.2.10.--- 计算点的局部纵向压力设计值--- 计算点的局部横向压力设计值--- 计算点的局部剪力设计值注解:(5)中的验算偏于保守,因为计算时排除了局部塑性压力分布,在弹性设计中是允许的。

因此这样的计算只能用于在的抗力相互作用不能执行时。

(6)截面的塑性应当使结构内力分布平衡且不超过屈服强度。

内力分布应当满足相关的塑性变形。

(7)对于所有等级截面的保守近似可以用单个压力合力的利用率实现线性组合.对于第一、第二、第三级别的截面受到,和的合力,可以用下面的标准来衡量:,,为设计抗力,依据于截面等级和由于剪力影响而造成的减小,参见6.2.8注:对于第四等级的截面参见6.2.9.3(2)(8)对于截面全部受压部分是第二等级以上的截面,要考虑全塑性弯曲变化能力。

(9)对于截面全部受压部分是第三等级截面,截面抗力应当建立在张力弹性分布贯穿截面。

压力值应小于极限材料的屈服强度。

注:极限材料应假定在极限状态裂缝中性层边缘,疲劳强度参见EN 1993-1-9。

(10)截面受力侧第一次屈服出现处,当决定第三等级截面抗力时,拉力区塑性保留应用于承担部分塑化。

6.2.2 截面特性6.2.2.1 全截面(1)全截面的特性应当使用标准尺寸。

扣件上的洞不能忽略,但容差可以增大。

拼接材料不能包括在内。

6.2.2.2 净面积(1)截面净面积应当计算全面积适当减去所有的洞和其他开口面积。

(2)净截面特性计算,扣除为一个单一的扣件孔应当为其坐标轴平面内全面积上的孔。

对于预埋孔,在预埋段可以有适当的容差。

(3)如果扣件孔不是错列的,扣件孔中所有减去的部分应当是组合区域孔面积的最大值在任意与截面垂直的轴线上(参见图6.1破坏平面②).注:最大值出现在临界破坏线处.(4)如果扣件中孔是错列的,扣件全区域所减去的应大于下列条件:a:(3)中给出的非错列孔减小量;b:注:s --- 错列度,平行于结构对称轴相邻的两个孔中心距离。

p --- 垂直于结构对称轴相邻两个孔中心的距离。

t --- 钢板厚度。

n --- 对角线或横穿结构或部分结构的弯线上孔的数量。

d0 --- 孔的直径。

(5)在角钢或其他有超过一个平面的开孔的型钢中,p的值应当沿着材料厚度中心测量。

(如图6.2)图6.1 错列开孔和临界断裂线1和2图6.2 两肢都开孔的角钢6.2.2.3 剪力滞后效应(1)对有效宽度的计算参见EN 1993-1-5。

(2)对于四级截面剪力滞后和局部屈曲应当根据EN 1993-1-5考虑。

注:对于冷轧薄翼钢参考EN 1993-1-3。

6.2.2.4 三级腹板和一级或二级翼缘的截面有效特性(1)三级腹板和一级或二级翼缘的截面分类为二级截面,参见5.5.2(11),腹板压力区比例应当有20εtw靠近压力翼缘,另有20εtw靠近塑性中性轴,如图6.3 。

1 压力区2 拉力区3 塑性中性轴4图6.3 二级有效腹板6.2.2.5 四级截面的有效截面特性(1)四级截面的有效截面特性应当符合压力区有效宽度。

(2)冷压薄壁型钢参见1.1.2(1)和 EN 1993-1-3。

(3)平面压力区有效宽度参见EN 1993-1-5。

(4)受轴向压力的四级钢可采用EN 1993-1-5中的方法决定(5)四级圆形钢管参见EN 1993-1-6。

6.2.3 拉力(1)各级型钢的拉力设计值应当满足:(2)带有开孔的型钢拉力抗值应取下列较小者:A:全截面塑性设计值B:带开孔扣件净截面极限设计值(3)进行容许设计时,全截面塑性设计值应当小于带开孔扣件净截面极限设计值,参见EN 1998。

(4)在C种连接中(参见EN 1993-1-8,3.4.2(1),开孔扣件净截面设计拉力值应当用代替;(5)通过一个翼缘连接的角钢参见EN 1993-1-8,3.6.3 。

通过外部连接的其他类型型钢需要同样的考虑。

6.2.4 压力(1)任意截面压力设计值应当满足下列条件:(2)截面统一抗拉设计值根据下列条件决定:一二三级截面适用四级截面适用(3)除了EN 1090中定义的大号或有沟槽的开孔外,开孔扣件不能用于压力区,当压力区布满了扣件时可以。

(4)对于不对称的四级型钢,采用6.2.9.3中的方法验证附加弯矩(根据有效截面中性轴的偏心率确定,参见6.2.2.5(4))。

6.2.5 弯矩(1)任意截面的弯矩设计值应当满足下列条件:根据开孔扣件决定,参见(4)至(6)(2)截面主轴抗弯强度设计值由下列条件决定:适用于一二级型钢适用于三级型钢适用于四级型钢注:和与材料最大弹力一致(3)对于两个轴向的弯矩可以采用6.2.9中的方法确定。

(4)如果用于承受压力的翼缘满足下列条件,压力区的扣件开孔可以不需要考虑:注:a:是压力翼缘面积b:(4)为塑性铰的承载能力设计提供了标准。

(5)腹板压力区不能有扣件开孔,除非由压力翼缘和腹板压力区所组成的全部压力区域满足(4)中的条件。

(6)大号或有沟槽的开孔外,开孔扣件不能用压力区,除非压力区布满了扣件。

6.2.6 剪力(1)任意截面的剪力设计值应当满足下列条件:注:是材料抗剪强度;塑性设计时和(2)中给出的塑性抗剪强度相同;弹性设计时是采用(4)和(5)中的方法计算得到的抗剪强度设计值。

(2)不考虑扭转,塑性抗剪强度设计者由下列条件决定:注:是剪力区面积。

(3)剪力区面积可以通过下列公式得到:a:轧制I型和H型型钢,荷载平行于腹板,但不小于。

b:轧制角钢,荷载平行于腹板c:轧制T型钢,荷载平行于腹板d:焊接I型、H型型钢和槽钢,荷载平行于腹板e:焊接I型、H型型钢和角钢、槽钢,荷载平行于翼缘f:厚度均匀的轧制矩形中空型钢:荷载平行于高Ah/(b+h)荷载平行于宽Ab/(b+h)g:厚度均匀的中空圆形型钢和钢管2A/π注:A是截面面积;b是总宽度;h是总高度;hw是腹板高度;r是回转半径;tf是翼缘厚度;tw是腹板厚度(如果腹板厚度是变化的,取最小厚度值)η参见EN 1993-1-5。

可以保守的取1.0。

(4)验证弹性抗剪承载力设计值可以采用下列截面的临界点作为标准。

EN 1993-1-5第五章中弯曲验证除外。

注:τEd可以由下列公式得到另注:---计算截面的剪力设计值S ---计算剪应力处以上毛截面对中和轴的面积矩I ---毛截面惯性矩t ---计算点处截面的宽度或厚度注:(4)中的计算偏于保守,不考虑局部塑性剪力分布,在弹性设计中是允许的,参见(5)。

但是只能用于采用公式(6.17)不能计算的基础上。

(5)对于I型或H型型钢,剪力计算可以采用下列公式:当时。

注:Af是一个翼缘的面积;Aw是腹板面积Aw=hw tw。

(6)考虑到腹板抗弯没有中介物,加劲肋应当依据EN 1993-1-5第五章确定η参见EN 1993-1-5第五章。

注:η可以保守得取1.0 。

(7)开孔扣件不能在剪力验证时出现,当对连接区域抗剪能力设计值验证时要考虑,参见EN 1993-1-8 。

(8)当剪力与扭转弯矩共同作用时,塑性抗弯承载力设计值应当根据6.2.7(9)中的规定适当减小。

6.2.7 扭转(1)扭转对构件的变形作用可以忽略,任意截面的扭矩设计值应当满足:注:是横截面抗扭承载力设计值。

(2)在任何截面总扭矩应考虑两个内部的总和效果。

注:是内部圣维南扭矩;是内部翘曲扭矩。

(3)考虑到材料的截面特性、支撑结构的约束条件和沿材料分布的作用力,任意截面的和值根据弹性分析得到的值确定。

附件2:外文原文(复印件)6 Ultimate limit states6.1 General(1)The partial factorsγM as defined in 2.4.3 should be applied to the various characteristic values of resistance in this section as follows:–resistance of cross-sections whatever the class is:γM0–resistance of members to instability assessed by member checks:γM1–resistance of cross-sections in tension to fracture:γM2–resistance of joints:see EN 1993-1-8NOTE 1 For other recommended numerical values see EN 1993 Part 2 to Part 6.For structures not covered by EN 1993 Part 2 to Part 6 the National Annex may define the partial factorsγMi;it is recommended to take the partial factorsγMi from EN 1993-2.NOT E 2B Partial factorsγMi for buildings may be defined in the National Annex.The following numerical values are recommended for buildings:γM0=1,00γM1=1,00γM2=1,256.2 Resistance of cross-sections6.2.1 General(1)The design value of an action effect in each cross section shall not exceed the corresponding design resistance and if several action effects act simultaneously the combined effect shall not exceed the resistance for that combination.(2)Shear lag effects and local buckling effects should be included by an effective width according to EN 1993-1-5.Shear buckling effects should also be considered according to EN 1993-1-5.(3)The design values of resistance should depend on the classification of the cross-section.(4)Elastic verification according to the elastic resistance may be carried out for all cross sectional classesprovided the effective cross sectional properties are used for the verification of class 4 cross sections.(5)For the elastic verification the following yield criterion for a critical point of the cross section may beused unless other interaction formulae apply,see 6.2.8 to 6.2.10.whereσis the design value of the local longitudinal stress at the point of considerationx,Edz,Edσis the design value of the local transverse stress at the point of considerationEdτis the design value of the local shear stress at the point of considerationNOTE The verification according to(5)can be conservative as it excludes partial plastic stre distribution,which is permitted in elastic design.Therefore it should only be performed where th interaction of on the basis of resistances NRd,MRd,VRd cannot be performed.4EN 1993-1-1:2005(E)(6)The plastic resistance of cross sections should be verified by finding a stress distribution which is equilibrium with the internal forces and moments without exceeding the yield strength.This stre distribution should be compatible with the associated plastic deformations.(7)As a conservative approximation for all cross section classes a linear summation of the utilizatio ratios for each stress resultant may be used.For class 1,class 2 or class 3 cross sections subjected to th combination of NEd,My,Ed and Mz,Ed this method may be applied by using the following criteria:1MMMMNNz,Rdz,Edy,Rdy,EdRdEd++≤(6.where NRd,My,Rd and Mz,Rd are the design values of the resistance depending on the cross section classification and including any reduction that may be caused by shear effects,see 6.2.8.NOTE For class 4 cross sections see 6.2.9.3(2).(8)Where all the compression parts of a cross-section are at least Class 2,the cross-section may be take as capable of developing its full plastic resistance in bending.(9)Where all the compression parts of a cross-section are Class 3,its resistance should be based on a elastic distribution of strains across the pressive stresses should be limited to the yie strength at the extreme fibres.NOTE The extreme fibres may be assumed at the midplane of the flanges for ULS checks.Ffatigue see EN 1993-1-9.(10)Where yielding first occurs on the tension side of the cross section,the plastic reserves of the tensio zone may be utilized by accounting for partial plastification when determining the resistance of a Class cross-section.6.2.2 Section properties6.2.2.1 Gross cross-section(1)The properties of the gross cross-section should be determined using the nominal dimensions.Holfor fasteners need not be deducted,but allowance should be made for larger openings.Splice materia should not be included.6.2.2.2 Net area(1)The net area of a cross-section should be taken as its gross area less appropriate deductions for a holes and other openings.(2)For calculating net section properties,the deduction for a single fastener hole should be the gro cross-sectional area of the hole in the plane of its axis.For countersunk holes,appropriate allowance shoube made for the countersunk portion.(3)Provided that the fastener holes are not staggered,the total area to be deducted for fastener hol should be the maximum sum of the sectional areas of the holes in any cross-section perpendicular to th member axis(see failure plane?in Figure 6.1).NOTE The maximum sum denotes the position of the critical fracture line.46EN 1993-1-1:2005(E(4)Where the fastener holes are staggered,the total area to be deducted for fasteners should be the great of:a)the deduction for non-staggered holes given in(3)b)?????????∑4pstnd2(6.where s is the staggered pitch,the spacing of the centres of two consecutive holes in the chain measure parallel to the member axis;p is the spacing of the centres of the same two holes measured perpendicular to the member axis;t is the thickness;n is the number of holes extending in any diagonal or zig-zag line progressively across the membor part of the member,see Figure 6.1.d0 is the diameter of hole(5)In an angle or other member with holes in more then one plane,the spacing p should be measure along the centre of thickness of the material(see Figure 6.2).Figure 6.1:Staggered holes and critical fracture lines 1 and 2Figure 6.2:Angles with holes in both legs6.2.2.3 Shear lag effects(1)The calculation of the effective widths is covered in EN 1993-1-5.(2)In class 4 sections the interaction between shear lag and local buckling should be considered accordinto EN 1993-1-5.NOTE For cold formed thin gauge members see EN 1993-1-3.4EN 1993-1-1:2005(E)6.2.2.4 Effective properties of cross sections with class 3 webs and class 1 or 2 flanges(1)Where cross-sections with a class 3 web and class 1 or 2 flanges are classified as effective Class cross-sections,see 5.5.2(11),the proportion of the web in compression should be replaced by a part of 20εadjacent to the compression flange,with another part of 20εtw adjacent to the plastic neutral axis of th effective cross-section in accordance with Figure 6.3.--+22 ff11432020εεttwwyy1 compression2 tension3 plastic neutral axis4 neglectFigure 6.3:Effective class 2 web6.2.2.5 Effective cross-section properties of Class 4 cross-sections(1)The effective cross-section properties of Class 4 cross-sections should be based on the effective widthof the compression parts.(2)For cold formed thin walled sections see 1.1.2(1)and EN 1993-1-3.(3)The effective widths of planar compression parts should be obtained from EN 1993-1-5.(4)Where a class 4 cross section is subjected to an axial compression force,the method givenEN 1993-1-5 should be used to determine the possible shift eN of the centroid of the effective area A relative to the centre of gravity of the gross cross section and the resulting additional moment:(6.EdEdN?M=NeNOTE The sign of the additional moment depends on the effect in the combination of internal forc and moments,see 6.2.9.3(2).(5)For circular hollow sections with class 4 cross sections see EN 1993-1-6.48EN 1993-1-1:2005(E6.2.3 Tension(1)The design value of the tension force NEd at each cross section shall satisfy:1,0NNt,RdEd≤(6.(2)For sections with holes the design tension resistance Nt,Rd should be taken as the smaller of:a)the design plastic resistance of the gross cross-sectionM0ypl,RdAfNγ=(6.b)the design ultimate resistance of the net cross-section at holes for fastenersM2netuu,Rd0,9AfNγ=(6.(3)Where capacity design is requested,see EN 1998,the design plastic resistance Npl,Rd(as given6.2.3(2)a))should be less than the design ultimate resistance of the net section at fasteners holes Nu,Rd( given in 6.2.3(2)b)).(4)In category C connections(see EN 1993-1-8,3.4.2(1),the design tension resistance Nt,Rd in 6.2.3(1) the net section at holes for fasteners should be taken as Nnet,Rd,where:M0netynet,RdAfNγ=(6.(5)For angles connected through one leg,see also EN 1993-1-8,3.6.3.Similar consideration should als be given to other type of sections connected through outstands.6.2.4 Compression(1)The design value of the compression force NEd at each cross-section shall satisfy:1,0NNc,RdEd≤(6.(2)The design resistance of the cross-section for uniform compression N should be determined follows:c,RdM0yc,RdAfNγ=for class 1,2 or 3 cross-sections(6.1M0effyc,RdAfNγ=for class 4 cross-sections(6.1(3)Fastener holes except for oversize and slotted holes as defined in EN 1090 need not be allowed for compression members,provided that they are filled by fasteners.(4)In the case of unsymmetrical Class 4 sections,the method given in 6.2.9.3 should be used to allow f the additional moment?MEd due to the eccentricity of the centroidal axis of the effective section,se 6.2.2.5(4).4PP‰‰EN 1993-1-1:2005(E)6.2.5 Bending moment(1)The design value of the bending moment MEd at each cross-section shall satisfy:1,0MMc,RdEd≤(6.1where Mc,Rd is determined considering fastener holes,see(4)to(6).(2)The design resistance for bending about one principal axis of a cross-section is determined as followsM0plyc,Rdpl,RdWfMMγ==for class 1 or 2 cross sections(6.1M0el,minyc,Rdel,RdWfMMγ==for class 3 cross sections(6.1M0eff,minyc,RdWfMγ=for class 4 cross sections(6.1where Wel,min and Weff,min corresponds to the fibre with the maximum elastic stress.(3)For bending about both axes,the methods given in 6.2.9 should be used.(4)Fastener holes in the tension flange may be ignored provided that for the tension flange:M0fyM2f,netuA0,9fAfγ≥γ(6.1where Af is the area of the tension flange.NOTE The criterion in(4)provides capacity design(see 1.5.8)in the region of plastic hinges.(5)Fastener holes in tension zone of the web need not be allowed for,provided that the limit given in(is satisfied for the complete tension zone comprising the tension flange plus the tension zone of the web.(6)Fastener holes except for oversize and slotted holes in compression zone of the cross-section need n be allowed for,provided that they are filled by fasteners.6.2.6 Shear(1)The design value of the shear force VEd at each cross section shall satisfy:1,0VVc,RdEd≤(6.1where Vc,Rd is the design shear resistance.For plastic design Vc,Rd is the design plastic shear resistance Vpl,as given in(2).For elastic design Vc,Rd is the design elastic shear resistance calculated using(4)and(5).(2)In the absence of torsion the design plastic shear resistance is given by:()M0vypl,RdAf/3Vγ=(6.1where Av is the shear area.50PP‰‰EN 1993-1-1:2005(E(3)The shear area Av may be taken as follows:a)rolled I and H sections,load parallel to web()fwfA?2bt+t+2rtbut not less thanηwwhtb)rolled channel sections,load parallel to web()fwfA?2bt+t+rtc)rolled T-section,load parallel to web()f0,9A?btd)welded I,H and box sections,load parallel to webη∑()wwhte)welded I,H,channel and box sections,load parallel to flanges A-∑()wwhtf)rolled rectangular hollow sections of uniform thickness:load parallel to depth Ah/(b+h)load parallel to width Ab/(b+h)g)circular hollow sections and tubes of uniform thickness 2A/πwhere A is the crosssectional area;b is the overall breadth;h is the overall depth;hw is the depth of the web;r is the root radius;tf is the flange thickness;tw is the web thickness(If the web thickness in not constant,tw should be taken as the minimu thickness.).ηsee EN 1993-1-5.NOTEηmay be conservatively taken equal 1,0.(4)For verifying the design elastic shear resistance Vc,Rd the following criterion for a critical point of thcross section may be used unless the buckling verification in section 5 of EN 1993-1-5 applies:f(3)1,0yM0Ed≤γτ(6.1whereτEd may be obtained from:ItVSEdEdτ=(6.2where VEd is the design value of the shear forceS is the first moment of area about the centroidal axis of that portion of the cross-section betweethe point at which the shear is required and the boundary of the cross-sectionI is second moment of area of the whole cross sectiont is the thickness at the examined pointNOTE The verification according to(4)is conservative as it excludes partial plastic she distribution,which is permitted in elastic design,see(5).Therefore it should only be carried out whe the verification on the basis of Vc,Rd according to equation(6.17)cannot be performed.5EN 1993-1-1:2005(E)(5)For I-or H-sections the shear stress in the web may be taken as:wEdEdAVτ=if A/A0,6(6.2fw≥where Af is the area of one flange;Aw is the area of the web:Aw=hw tw.(6)In addition the shear buckling resistance for webs without intermediate stiffeners should be accordin to section 5 of EN 1993-1-5,ifηε72thww>(6.2Forηsee section 5 of EN 1993-1-5.NOTEηmay be conservatively taken equal to 1,0.(7)Fastener holes need not be allowed for in the shear verification except in verifying the design she resistance at connection zones as given in EN 1993-1-8.(8)Where the shear force is combined with a torsional moment,the plastic shear resistance Vpl,Rd shou be reduced as specified in 6.2.7(9).6.2.7 Torsion(1)For members subject to torsion for which distortional deformations may be disregarded the desig value of the torsional moment TEd at each cross-section should satisfy:1,0TTRdEd≤(6.2where TRd is the design torsional resistance of the cross section.(2)The total torsional moment TEd at any cross-section should be considered as the sum of two intern effects:TEd=Tt,Ed+Tw,Ed(6.2where Tt,Ed is the internal St.Venant torsion;Tw,Ed is the internal warping torsion.注明原文出处Eurocode 3:Design of steel structures—。

相关主题