当前位置:文档之家› 2016讲弹性力学试题及答案1

2016讲弹性力学试题及答案1

2012年度弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

2、平面问题分为 和 。

平面应力问题 平面应变问题6、在弹性力学中规定,切应变以 时为正, 时为负,与 的正负号规定相适应。

直角变小 变大 切应力7、小孔口应力集中现象中有两个特点:一是 ,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。

二是 ,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。

孔附近的应力高度集中 , 应力集中的局部性四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ;其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s fm l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

(1)此组应力分量满足相容方程。

为了满足平衡微分方程,必须A =-F ,D =-E 。

此外还应满足应力边界条件。

(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。

上两式是矛盾的,因此,此组应力分量不可能存在。

2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。

(1)Axy x =ε,3By y =ε,2Dy C xy -=γ;(2)2Ay x =ε,y Bx y 2=ε,Cxy xy =γ; (3)0=x ε,0=y ε,Cxy xy =γ; 其中,A ,B ,C ,D 为常数。

解:应变分量存在的必要条件是满足形变协调条件,即y x xy xyy x ∂∂∂=∂∂+∂∂γεε22222 将以上应变分量代入上面的形变协调方程,可知:(1)相容。

(2)C By A =+22(1分);这组应力分量若存在,则须满足:B =0,2A =C 。

(3)0=C ;这组应力分量若存在,则须满足:C =0,则0=x ε,0=y ε,0=xy γ(1分)。

5、证明应力函数2by =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠b )。

解:将应力函数2by =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数2by =ϕ能满足相容方程。

由于不计体力,对应的应力分量为b yx 222=∂∂=ϕσ,022=∂∂=x y ϕσ,02=∂∂∂-=y x xy ϕτ 对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,0)(2=-=-=h y xy x f τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,0)(2===h y xy x f τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,b f l x x x 2)(2-=-=-=σ,0)(2=-=-=l x xy y f τ;右边,2lx =,1=l ,0=m ,b f l x x x 2)(2===σ,0)(2===l x xy y f τ。

可见,上下两边没有面力,而左右两边分别受有向左和向右的均布面力2b 。

因此,应力函数2by =ϕ能解决矩形板在x 方向受均布拉力(b >0)和均布压力(b <0)的问题。

6、证明应力函数axy =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠a )。

解:将应力函数axy =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数axy =ϕ能满足相容方程。

由于不计体力,对应的应力分量为022=∂∂=yx ϕσ,022=∂∂=x y ϕσ,a y x xy -=∂∂∂-=ϕτ2 对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,a f h y xy x =-=-=2)(τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,a f h y xy x -===2)(τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,0)(2=-=-=l x x x f σ,a f l x xy y =-=-=2)(τ;右边,2lx =,1=l ,0=m ,0)(2===l x x x f σ,a f l x xy y -===2)(τ。

可见,在左右两边分别受有向下和向上的均布面力a ,而在上下两边分别受有向右和向左的均布面力a 。

因此,应力函数axy =ϕ能解决矩形板受均布剪力的问题。

7、如图所示的矩形截面的长坚柱,密度为ρ,在一边侧面上受均布剪力,试求应力分量。

解:根据结构的特点和受力情况,可以假定纵向纤维互不挤压,即设0=x σ。

由此可知022=∂∂=yx ϕσ将上式对y 积分两次,可得如下应力函数表达式())()(,21x f y x f y x +=ϕ将上式代入应力函数所应满足的相容方程则可得0)()(424414+dxx f d dx x f d y 这是y 的线性方程,但相容方程要求它有无数多的解(全柱内的y 值都应该满足它),可见它的系数和自由项都应该等于零,即0)(414=dx x f d , 0)(424=dxx f d 这两个方程要求I Cx Bx Ax x f +++=231)(, K Jx Ex Dx x f +++=232)(代入应力函数表达式,并略去对应力分量无影响的一次项和常数项后,便得2323)(Ex Dx Cx Bx Ax y ++++=ϕ对应应力分量为022=∂∂=yx ϕσgy E Dx B Ax y xy ρϕσ-+++=∂∂=26)26(22C Bx Ax yx xy ---=∂∂∂-=2322ϕτ以上常数可以根据边界条件确定。

左边,0=x ,1-=l ,0=m ,沿y 方向无面力,所以有0)(0==-=C x xy τ右边,b x =,1=l ,0=m ,沿y 方向的面力为q ,所以有q Bb Ab b x xy =--==23)(2τ上边,0=y ,0=l ,1-=m ,没有水平面力,这就要求xy τ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y bxyτ将xy τ的表达式代入,并考虑到C =0,则有0)23(230232=--=--=--⎰Bb Ab BxAx dx Bx Ax b b而00)(00=⋅=⎰dx y b xy τ自然满足。

又由于在这部分边界上没有垂直面力,这就要求y σ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y byσ,0)(00==⎰x d x y byσ将y σ的表达式代入,则有02323)26(2020=+=+=+⎰Eb Db Ex Dx dx E Dx b b022)26(230230=+=+=+⎰Eb Db Ex Dx xdx E Dx b b由此可得2bq A -=,b qB =,0=C ,0=D ,0=E 应力分量为0=x σ, gy b x b y q y ρσ-⎪⎭⎫ ⎝⎛-=312, ⎪⎭⎫ ⎝⎛-=23b x b x q xy τ虽然上述结果并不严格满足上端面处(y =0)的边界条件,但按照圣维南原理,在稍远离y =0处这一结果应是适用的。

9、如图所示三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次的应力函数求解。

解:纯三次的应力函数为3223dy cxy y bx ax +++=ϕ相应的应力分量表达式为dy cx xf yx x 6222+=-∂∂=ϕσ, gy by ax yf x y y ρϕσ-+=-∂∂=2622, cy bx y x xy 222--=∂∂∂-=ϕτ 这些应力分量是满足平衡微分方程和相容方程的。

现在来考察,如果适当选择各个系数,是否能满足应力边界条件。

上边,0=y ,0=l ,1-=m ,没有水平面力,所以有02)(0==-=bx y xy τ对上端面的任意x 值都应成立,可见0=b同时,该边界上没有竖直面力,所以有06)(0==-=ax y y σ对上端面的任意x 值都应成立,可见0=a因此,应力分量可以简化为dy cx x 62+=σ,gy y ρσ-=,cy xy 2-=τ斜面,αtan x y =,ααπsin 2cos -=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=l ,()ααcos cos =-=m ,没有面力,所以有()()⎪⎩⎪⎨⎧=+=+==00tan tan αατστσx y xy y x y yx x l m m l 由第一个方程,得()0sin tan 6sin 4cos tan 2sin tan 62=--=-+-αααααααdx cx cx dx cx对斜面的任意x 值都应成立,这就要求0tan 64=--αd c由第二个方程,得0sin sin tan 2cos tan sin tan 2=-=-αρααααρααgx cx gx cx对斜面的任意x 值都应成立,这就要求0tan 2=-g c ρα(1分)由此解得αρcot 21g c =(1分),αρ2cot 31g d -= 从而应力分量为αραρσ2cot 2cot gy gx x -=, gy y ρσ-=, αρτcot gy xy -=设三角形悬臂梁的长为l ,高为h ,则l h=αtan 。

相关主题