梁的弯曲正应力电测实验梁的弯曲正应力电测实验1、纯弯曲梁有关尺寸:弯曲梁截面宽度 b=20mm, 高度 h=40mm, 载荷作用点到梁支点距离a=150mm 。
E=210GPa。
2、本实验采用公共接线法,即梁上应变片已按公共线接法引出9根导线,其中一根特殊颜色导线为公共线,见下图1。
图一3、如图二,将应变片公共引线接至应变仪第一排的任一通道上,其它按相应序号接至第二排各通道上,补偿片接法选半桥。
4、调零。
打开纯弯曲梁实验装置电源开关,转动加载手柄1,当测力仪2显示 -0.5KN即F0=0.500KN。
电桥粗调平衡:打开应变仪电源开关,仪器将自动逐点将电桥预调平衡;电桥细调平衡:按下静态应变测试仪操作面板数字“1”,再按“确定”,然后按“平衡”,如显示屏显示为“0”,则说明调零成功,如果不为“0”,找老师处理。
依次类推,逐点(2,3,4。
8,11,12,。
18)将电桥预调平衡。
5、逐级加载。
继续转动手柄1,当测力仪2显示1.5KN,即F1=1.500KN(150Kg),按下静态应变测试仪操作面板数字“1”,再按“确定”,显示屏上将显示该点应变。
依次类推,逐点测出各点应变。
分别加F2=2.500KN, F3=3.500KN, F4=4.500KN,逐点测出各点应变。
图二6、卸荷至0.500KN,重复实验步骤4-5,测第二次数据。
7、本实验重复2次。
8、实验结束,关闭电源,拆除接线,整理实验现场。
平面纯弯曲梁横截面上的正应力纯弯曲是指梁段的各个横截面上只有弯矩而无剪力,如图中CD段梁。
实验现象分析:横向线变形后仍保持为直线,只是它们相对旋转了一个角度,但仍与纵向线成正交。
各纵向线变形后仍保持平行,但由直变弯;梁凹侧的纵向线缩短,凸侧纵向线伸长;对应纵向线缩短区域的横截面变宽,纵向线伸长区域的横截面变窄。
根据上述现象,由材料的均匀连续性假设设想梁内部的变形也与表面变形相应,因而可作如下假设:平面假设——由现象推测,梁弯曲变形后,其横截面仍保持为平面,且仍与弯曲后的纵线正交,这就是梁弯曲变形后的平面假设。
纵向纤维单向应力假设——由现象推测,将梁看成是由无限多条纵向纤维组成的。
假设梁各层的纵向纤维之间无挤压现象(即垂直于横截面的纵向截面上无正应力)。
所以,各条纵向纤维仅承受轴向拉伸或压缩变形,即处于单向应力状态。
梁弯曲后,上部各层纵向纤维缩短,下部各层纵向纤维伸长,根据梁变形的连续性推断,中间必有一层长度不变的过渡纤维层,称为中性层,中性层与横截面的交线称为中性轴,中性轴把横截面分为两部分,一部分受拉,一部分受压。
变形后仍保持为平面的横截面绕中性轴作相对转动。
正应力公式的推导考虑几何、物理与静力学三方面关系建立弯曲正应力公式。
z zM yσI式中:z M —所求应力点所在横截面上的弯矩;y —所求的应力点到中性轴的距离;z I —截面对中性轴的惯性矩。
梁的弯曲正应力电测实验1、纯弯曲梁有关尺寸:弯曲梁截面宽度 b=20mm, 高度 h=40mm, 载荷作用点到梁支点距离a=150mm 。
E=210GPa。
2、本实验采用公共接线法,即梁上应变片已按公共线接法引出9根导线,其中一根特殊颜色导线为公共线,见下图1。
图一3、如图二,将应变片公共引线接至应变仪第一排的任一通道上,其它按相应序号接至第二排各通道上,补偿片接法选半桥。
4、调零。
打开纯弯曲梁实验装置电源开关,转动加载手柄1,当测力仪2显示 -0.5KN即F0=0.500KN。
电桥粗调平衡:打开应变仪电源开关,仪器将自动逐点将电桥预调平衡;电桥细调平衡:按下静态应变测试仪操作面板数字“1”,再按“确定”,然后按“平衡”,如显示屏显示为“0”,则说明调零成功,如果不为“0”,找老师处理。
依次类推,逐点(2,3,4。
8,11,12,。
18)将电桥预调平衡。
5、逐级加载。
继续转动手柄1,当测力仪2显示1.5KN,即F1=1.500KN(150Kg),按下静态应变测试仪操作面板数字“1”,再按“确定”,显示屏上将显示该点应变。
依次类推,逐点测出各点应变。
分别加F2=2.500KN, F3=3.500KN, F4=4.500KN,逐点测出各点应变。
图二6、卸荷至0.500KN,重复实验步骤4-5,测第二次数据。
7、本实验重复2次。
8、实验结束,关闭电源,拆除接线,整理实验现场。
矩形截面梁切应力设有一矩形截面梁,其截面宽度为b 、高度为h ,并在纵向对称面内承受外力作用,梁发生平面橫力弯曲,其横截面上的剪力Q F 沿y 轴方向,如图1所示,依据切应力互等定律和工程上的精度要求,对梁横截面上的切应力方向及分布规律作出两个假设。
(1)横截面上任一点处的切应力τ方向均平行于剪力Q F ; (2)切应力沿截面宽度均匀分布图1矩形截面梁切应力计算公式Q zz F S I bτ=式中:Q F —所求点所在横截面上的剪力;z I —整个横截面对中性轴的惯性矩; b —所求切应力作用点处的截面宽度;z S —所求切应力作用点处横线以下(或以上)的面积*A 对中性轴的静矩。
利用公式时,Q F 、z S 可直接代绝对值。
切应力沿横截面高度按抛物线规律分布,上下边缘处的切应力为零,中性轴处的切应力最大,并且最大值为整个横截面平均切应力的1.5倍,即15Qmax F .A τ=实验五 梁的弯曲正应力实验一、实验目的和要求:1) 用电测法测定纯弯曲梁受弯曲时A A -(或B B -)截面各点的正应力值,与理论计算值进行比较。
2) 了解电阻应变仪的基本原理和操作方法二、实验设备CM-1C 型静态电阻应变仪,纯弯曲梁实验装置三、弯曲梁简图:图5-1已知: mm 630=L 、mm 160=a 、mm 20=b 、mm 40=h 、6/h c =、GPa 200=E在梁的纯弯曲段内A A -(或B B -)截面处粘贴七片电阻片,即1R 、2R 、3R 、4R 、5R 、6R 、7R 。
4R 贴在中性层处,实验时依次测出1、2、3、4、5、6、7点的应变,计算出应力。
四、测量电桥原理构件的应变值一般均很小,所以,应变片电阻变化率也很小,需用专门仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其测量电路为惠斯顿电桥,如图所示。
如图所示,电桥四个桥臂的电阻分别为1R 、2R 、3R 和4R ,在A 、C 端接电源,B 、D 端为输出端。
设A 、C 间的电压降为U 则经流电阻1R 、4R 的电流分别为211R R UI +=,、434R R U I +=,所以1R 、4R 两端的电压降分别为 U R R R R I U 21111AB+==,U R R R U 434AD +=所以B 、D 端的输出电压为U R R R R R R R R U R R R U R R R U U U ))((43214231434211AD AB ++-=+-+=-=∆当电桥输出电压0=∆U 时,称为电桥平衡。
故电桥平衡条件为4231R R R R =或3421R R R R =设电桥在接上电阻1R 、2R 、3R 和4R 时处于平衡状态,即满足平衡条件。
当上述电阻分别改变1R ∆、2R ∆、3R ∆和4R ∆时))(())(())((4433221144223311R R R R R R R R R R R R R R R R UU ∆++∆+∆++∆+∆+∆+-∆+∆+=∆略去高阶微量后可得⎪⎪⎭⎫ ⎝⎛∆-∆+∆-∆+=∆4433121222121)(R R R R R R R R R R R R UU⎪⎭⎫⎝⎛∆-∆+∆-∆=R R R R R R R R U 43214(当4321R R R R ===时)上式代表电桥的输出电压与各臂电阻改变量的一般关系。
在进行电测实验时, 有时将粘贴在构件上的四个相同规格的应变片同时接入测量电桥,当构件受力后,设上述应变片感受到的应变分别为1ε、2ε、3ε、4ε相应的电阻改变量分别为1R ∆、2R ∆、3R ∆和4R ∆,应变仪的读数为4321d 4εεεεε-+-=∆=KUU以上为全桥测量的读数,如果是半桥测量,则读数为21d 半4εεε-=∆=KUU所谓半桥测量是将应变片3R 和4R 放入仪器内部,1R 和2R 测量片接入电桥,接入A 、B 和B 、C 组成半桥测量。
五、理论和实验计算理论计算Z7,1W M=σ、Z 26,2I c M ⋅=σ、Z 15,3I c M ⋅=σ、04=σ62Z bh W =、123Z bh J = 实验值计算:εσ⋅=E图5-3§7-1 梁弯曲时的正应力一、纯弯曲时的正应力如图7-2a 所示的简支梁,荷载与支座反力都作用在梁的纵向对称平面内,其剪力图和弯矩图加图7-2b 、c 所示。
在梁的AC 和DB 段内,各横截面上同时有剪力和弯矩,这种弯曲称为剪力弯曲或横力弯曲。
在CD 段中,各横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲。
b )c )a )图7-2为了使问题简单,现以矩形截面梁为例,推导梁在纯弯曲时横截面上的正应力。
其方法和推导圆轴在扭转时的剪应力公式的方法相同,从几何变形、物理关系和静力学关系等三方面考虑。
1、几何变形为观察梁纯弯曲时的表面变形情况,在矩形截面梁的表面画上一些纵向直线和横向直线,形成许多小矩形,然后在梁两端对称位置上加集中荷载P ,梁受力后产生对称变形,在两个集中荷载之间的区段产生纯弯曲变形,如图7-3所示。
从实验中观察到如下现象:m n nma )b )d )ij ij图7-31)所有纵向直线均变为曲线,靠近顶面(凹边)的纵向线缩短,靠近底面(凸边)的纵向线伸长,如图7-3b 中的i ′—i ′和j ′—j ′。
2)所有横向直线仍为直线,只是各横向线之间作了相对转动,但仍与变形后的纵向线正交, 如图7-3b 中的m ′—m ′。
3)变形后横截面的高度不变,而宽度在纵向线伸长区减小,在纵向线缩短区增大,如图7-3b 右所示。
根据以上观察到的现象,并将表面横向直线看作梁的横截面,可作如下假设:1)平面假设:变形前为平面的横截面,变形后仍为平面,它像刚性平面一样绕某轴旋转了一个角度,但仍垂直于梁变形后的轴线。
2)单向受力假设:认为梁由无数微纵向纤维组成。
各纵向纤维的变形只是简单的拉伸或压缩,各纵向纤维无挤压现象。
根据平面假设,梁变形后的横截面转动,使得梁的凸边纤维伸长,凹边纤维缩短。
由变形的连续性可知,中间必有一层纤维既不伸长也不缩短,此层纤维称为中性层,如图7-3d 所示。
中性层与横截面的交线称为中性轴(图7-3d )。
它将横截面分为受拉和受压两个区域。
在图示平面弯曲情况下的梁,由于外力作用在梁的纵向对称平面内,故梁的变形也对称于此平面,因此,中性轴应垂直于截面的对称轴。