绪论混凝土是一类量大面广、历史悠久的传统材料,广泛应用于土木、建筑、水利等工程。
建筑业的迅速发展,对混凝土的性能提出了新的要求,如提高混凝土的强度、耐久性,改善新拌混凝土的流动性,减少混凝土在运输中的塌落度损失等。
普通混凝土已经不能满足现行的施工工艺要求。
国内外的生产实践证明,应用外加剂是混凝土技术进步的主要途径,能使混凝土满足各种不同的施工要求,具有投资少、见效快、推广应用较容易、技术经济效益显著等优点。
混凝土外加剂是在拌制混凝土过程中掺入的用以改善混凝土性能的物质,赋予新拌混泥土和硬化混泥土以优良性能的化学外加剂,掺量通常不大于水泥(或胶凝材料)质量的5%,它是混泥土的第五组分。
混泥土外加剂是生产各种高性能混泥土和特种混泥土不可缺少的部分。
混泥土外加剂可以改进混泥土内部结构和工艺过程,应用混泥土外加剂的目的在于改善混泥土的和易性和硬化混泥土的性能,同时获得节省水泥、节省能源、提高强度、缩短工期、加快模板周转等多种经济技术效果。
以减水剂的发展为核心,矿物外加剂的应用离不开化学外加剂,各种复合外加剂一般都包括减水剂成分。
在混泥土中掺入外加剂后,许多性能如微观结构、孔隙率、吸附性、硬化速度、强度等将发生改变,水泥矿物水化和水泥本身的一些性能也会受到影响[1]。
在混凝土外加剂中,减水剂是目前应用最广的一种外加剂。
减水剂又称为分散剂或塑化剂。
减水剂对混泥土的影响主要表现为:一是:保持混泥土用水量不变,提高拌合物流动性;二是:保持流动性和水泥用量不变,可减少用水量,降低水灰比,提高混泥土的强度;三是:保证强度和流动性不变,在减水的同时减少水泥用量,可节约水泥[2]。
一、减水剂的发展历史20世纪30年代,日本、德国和英国等国家的科研人员为了解决混泥土存在的缺点,对混泥土外加剂进行了探索,将香酸钠、木质素磺酸钠、硬脂酸皂等有机物外加剂加入混泥土中,应用于公路、隧道等工程,收到了一定的效果。
1936年由Kennedy首先发现了萘磺酸甲醛聚合物。
1938年,一种由萘磺酸盐组成的水泥分散剂在美国获得了专利[3]。
1962年,日本的服部成功研制出以萘磺酸甲醛缩合物为主要成分的高效减水剂,并实现了工业化生产。
联邦德国在1964年研制出三聚氰胺磺酸盐甲醛聚合物高效减水剂。
到80年代初,这两种减水剂在好多国家得到了应用和发展。
90年代初,日本针对高强超高强混泥土的需求而研究开发出聚羧酸系高效减水剂,1995年后,这种减水剂在日本国内的使用超过了萘磺酸甲醛聚合物[4]。
我国研究减水剂的工作始于20世纪50年代,当时研究应用的是一些普通减水剂,如糖蜜,腐植酸及盐类减水剂以及纸浆脚料木质素磺酸盐类等。
70年代初,将印染业使用的NN0扩散剂引入混凝土用作减水剂,其性能明显优于木质素磺酸钙,这一突破性的进展标志着我国混凝土外加剂的应用和研究进入了更高阶段。
l981年初,苏州混凝土制品研究设计院研制成功聚三聚氰胺甲醛磺酸盐。
80年代初,我国许多造纸企业与高等院校,研究院所又联手开发纸浆下脚料。
330工程局曾研究豆腐水的减水性能并投入到工程中应用。
在掺量为0.1%的情况下,可节约水泥0.8%,混凝土强度增加10%,同时具有保塑,增塑和缓凝等作用。
与此同时,积极报道国外有关研究进展情况,以及国外驰名商标的外加剂。
l986年初,我国常州,北京首次引进了奥地利和英国的系列高性能外加剂有关技术,进一步促进了我国外加剂的发展,研究与应用[5]。
从20世纪80年代初至今,高效减水剂的品种和质量水平都有了飞速的发展,改性木质素磺酸盐系和三聚氰胺系的高效减水剂等都得到了很好的开发应用。
但高效减水剂中绝大多数是萘系减水剂,约占高效减水剂总量的90%以上。
如何选择其他原料,研究开发出具有更大减水率及更高缓凝和保坍性能的减水剂成为外加剂研究的一个重要方向,由苯及其同系物为原料合成这类聚合物的电解质即单环芳烃型高性能减水剂的研究就符合这个研究方向,而这两类减水剂在我国的研究只是刚起步,应该成为我国高效减水剂今后发展的方向。
二、减水剂的作用机理简介由于水泥颗粒粒径绝大部分在7μm-80μm范围内,属于微细粒粉体颗粒范畴。
对于水泥-水体系,水泥颗粒及水泥水化颗粒表面为极性表面,具有较强的亲水性。
微细的水泥颗粒具有较大的比表面能(固液界面能),为了降低固液界面总能量,微细的水泥颗粒具有自发凝聚成絮团趋势,以降低体系界面能,使体系在热力学上保持稳定性。
同时。
在水泥水化初期,C3A颗粒表面带正电荷,而C3S和C2S颗粒表面带负电荷,正负电荷的静电引力作用也促使水泥颗粒凝聚形成絮团结构。
由于水泥颗粒的絮凝结构会使10%-30%的自由水包裹其中,从而严重降低了混凝土拌合物的流动性。
减水剂掺入的主要作用就是破坏水泥颗粒的絮凝结构,使其保持分散状态,释放出包裹于絮团中的自由水,从而提高新拌混凝土的流动性。
作为水泥颗粒分散剂的减水剂,大部分是相对分子量较低的聚合物电解质,其相对分子量在1500-100000范围内。
这些聚合物电解质的碳氢链上都带有许多极性基官能团,极性基团的种类通常有-SO3、-COO-及-OH等。
这些极性基团与水泥颗粒或水化水泥颗粒的极性表面具有较强的亲合力。
带电荷的减水剂(具有-SO3、-COO-等极性基的阴离子表面活性物质)通过范德华力或静电引力或化学键力吸附在水泥颗粒表面;带极性基(如-OH、-O-)的非离子减水剂也能通过范德华力和氢键的共同作用吸附在水泥颗粒表面。
没有与水泥颗粒表面作用的极性基则随碳氢链伸入液相。
水泥颗粒或水泥水化颗粒作为固体吸附剂,由于本身性质和结构的复杂性,使减水剂在其表面的吸附既有物理吸附,也有化学吸附。
并且吸附作用可以发生在毛细孔、裂缝及气孔的所有表面上。
减水剂在水泥颗粒表面的吸附过程要比一般的溶液吸附过程复杂得多。
并且在水泥—水分散体系中,水泥粒子吸附减水剂的同时,还伴随着水泥的水化过程。
减水剂掺入新拌混凝土中,能够破坏水泥颗粒的絮凝结构,起到分散水泥顺位及水泥水化颗粒的作用,从而释放絮凝结构中的自由水,增大混凝土拌合物的流动性。
虽然,减水剂的种类不同,其对水泥颗粒的分散作用机理也不尽相同,但是,概括起来,减水剂分散减水机理基本上包括以下五个方面:(1)降低水泥颗粒固液界面能减水剂通常为表面活性剂(异极性分子),性能优良的减水剂在水泥-水界面上具有很强的吸附能力。
减水剂吸附在泥颗粒表面能够降低水泥颗粒固液界面能,降低水泥-水分散体系总能量,从而提高分散体系的热力学稳定性,这样有利于水泥颗粒的分散。
因此,不但减水剂的极性基类、数量影响其减水作用效果,而且减水剂的非极性基的结构特征,碳氢链长度也显著影响减水剂的性能。
(2)静电斥力作用新拌混凝土中掺入减水剂后,减水剂分子定向吸附在水泥颗粒表面,部分极性基团指向液相。
由于亲水极性基团的电离作用,使得水泥颗粒表面带上电性相同的电荷,并且电荷量随减水剂浓度增大而增大直至饱和,从而使水泥颗粒之间产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。
带磺酸根(-SO3)的离子型聚合物电解质减水剂。
静电斥力作用较强;带羧酸根离子 (-COO-)的聚合物电解质减水剂,静电斥力作用次之;带羟基(-OH)和醚基(-O-)的非离子型表面活性减水剂,静电斥力作用最小。
(3)空间位阻作用聚合物减水剂吸附在水泥颗粒表面,则在水泥颗粒表面形成一层有一定厚度的聚合物分子吸附层。
当水泥颗粒靠近,吸附层开始重叠,即在颗粒之间产生斥力作用,重叠越多,斥力越大。
这种由于聚合物吸附层靠近重叠而产生的阻止水泥颗粒接近的机械分离作用力,称之为空间位阻斥力。
一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,它们的大小取决于溶液中离子的浓度,以及聚合物的分子结构和摩尔质量。
线型离子聚合物减水剂(如萘磺酸盐甲醛缩合物、三聚氰胺磺酸盐甲醛缩合物)吸附在水泥颗粒表面,能显著降低水泥颗粒的ξ负电位(绝对值增大),因而其以静电斥力为主分散水泥颗粒,其空间位阻斥力较小。
具有枝链的共聚物高效减水剂(如交叉链聚丙烯酸、羧基丙烯酸与丙烯酸酯共聚物、含接枝聚环氧乙烷的聚丙烯酸共聚物等等)吸附在水泥颗粒表面,虽然其使水泥颗粒的ξ负电位降低较小,因而静电斥力较小,但是由于其主链与水泥颗粒表面相连,枝链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力作用,所以,在掺量较小的情况下便对水泥颗粒具有显著的分散作用。
(4)水化膜润滑作用减水剂大分子含有大量极性基团,如木质素磺酸盐含有磺酸基(-SO3),羟基(-0H)、和醚基(-O-)、萘磺酸盐甲醛缩合物和三聚氰胺磺酸盐甲醛缩合物含有磺酸基,氨基磺酸盐甲醛缩合物含有磺酸基和胺基(-NH2):聚胺酸盐减水剂含有羟基(-CO-)和醚基。
这些极性基因具有较强的亲水作用,特别是羟基、胺基和醚基等均可与水形成氢键,故其亲水性更强。
因此,减水剂分子吸附在水泥颗粒表面后,由于极性基的亲水作用,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。
水化膜的形成可破坏水泥颗粒的絮凝结构,释放包裹于其中的拌和水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒拉的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大。
(5)引气隔离“滚珠”作用木质素磺酸盐、腐植酸盐、聚羧酸系及氨基磺酸盐系等减水剂,由于能降低液气界面张力故具有一定的引气作用。
这些减水剂掺入混凝土拌合物中,不但能吸附在固液界面上,而且能吸附在液气界面上,使混凝土拌合物中易于形成许多微小气泡。
减水剂分子定向排列在气泡的液气界面上,使气泡表面形成一层水化膜,同时带上与水泥颗粒相同的电荷。
气泡与气泡之间,气泡与水泥颗粒之间均产生静电斥力,对水泥颗粒产生隔离作用,从而阻止水泥颗粒凝聚。
而且气泡的滚珠和浮托作用,也有助于新拌混凝土中水泥颗粒、骨料颗粒之间的相对滑动。
因此,减水剂所具有的引气隔离“滚珠”作用可以改善混凝土拌合物的和易性。
三、减水剂对混凝土性能的影响(一)减水剂对新拌混凝土性能的影响1.提高工作性能和易性是指混凝土拌合物易于施工操作(即易于拌和、运输、浇灌及振捣),并能获得质量均匀、密实的混凝土的性能(又称为工作性)。
和易性是一项综合性指标,它包括流动性、粘聚性和保水性三方面的涵义。
适量减水剂掺入混凝土拌合物中,由于其对水泥颗粒的分散作用,可使新拌混凝土粘度下降,颗粒间相对流动容易,从而不同程度地改善新拌混凝土的和易性。
高效减水剂对新拌混凝土和易性的改善比普通减水剂强。
在一定范围内,随着减水剂掺量增大和易性改善程度也增大。
但是引气缓凝减水剂(如木质素磺酸盐、糖钙、糖蜜等)掺量过大会导致混凝土凝结时间过长,并引气过多降低硬化混凝土强度。