当前位置:文档之家› 催化裂化原理

催化裂化原理


4
4.1 概述
二、催化裂化的发展历程 催化裂化自1936年实现工业化至今经历了四个阶段: 固定床、移动床、流化床和提升管。
Fixed Bed
Moving Bed
5
4.1 概述
Fluid Bed
Lift Pipe
在全世界催化裂化装置的总加工能力中,提升管催化 裂化已占绝大多数。
6
4.1 概述
三、催化裂化主要发展方向 1、加工重质原料
我国车用汽油70--80%是
产量, Mt/a
800 700 600 500 400 300 200 100 0 1991 1993 1995 1997 1999 2001 时间,年份
来自催化裂化汽油;
柴油产量的30%以上来自
催化裂化; 炼油企业中一半以上的效
全世界 中国 美国 日本 西欧
益依靠催化裂化。
18
C
4.3 烃类的催化裂化反应
二、反应机理(Reaction Mechanism) 正碳离子(carbonium ion)机理。 1、正碳离子 烃分子中有一个碳原子的外围缺少一对电子,而形成 带正电的离子,如:
H ¨ CH R C +
特点:不能在溶液中离解出来自由存在; 只能吸附在催化剂表面上参加化学反应。
23
4.3 烃类的催化裂化反应
CH3 CH3 C CH3 + + CH2 CH3 CH2 + C CH2 CH3 H2C H2C CH2 CH2
CH3 CH3 CH CH3 +
较小正碳离子与烯烃、烷烃、环烷烃间发生氢转移反 应,使小正碳离子变成小分子烷烃。
中性烃分子变成新正碳离子,再进行各种反应,使原
19
4.3 烃类的催化裂化反应
正碳离子形成:烯烃的双键中一个键断开,并在含H多的C 上加上一个H+,使含H少的另一个C缺少一对电子。 2、形成碳离子条件 (1)存在烯烃 来源:原料本身、热反应产生。
(2)存在质子H+
来源:由催化剂的酸性中心提供。 H+不称氢离子,存在于Cat.的活性中心,不能离开Cat.表面。
15
4.3 烃类的催化裂化反应
(2)双键位置异构
C C C C C C
C C C C C C
C H C C H C
(3)几何异构
C C H C C H
3、氢转移反应(hydrogen transfer reaction) 某烃分子上的氢脱下来加到另一烯烃分子上使之饱和 的反应。
氢转移是催化裂化特有的反应。
1、化学反应方向和化学平衡
反应条件:400~500℃、接近常压,反应可分三类: (1)平衡时基本进行完全的反应:分解反应、氢转移

平衡常数很大、可看作不可逆反应; 反应深度不受平衡限制,由反应速率和反应时间决定。
32
4.3 烃类的催化裂化反应
(2)平衡时进行不完全的反应:异构化、开环

化学平衡常数值不大,一般反应条件下要受平衡限制; 反应速率不高、反应时间不长,反应很难达到平衡,
烷烃进行氢转移反应而生成稳定的烷烃和芳烃。

烯烃与高分子芳烃缩合生成焦碳。
31
4.3 烃类的催化裂化反应
思考3:在催化裂化反应中,需要控制二次反应么?
在催化裂化生产中应适当控制二次反应的发生
3、渣油催化裂化反应
芳香分中含有较多的多环芳烃和稠环芳烃。我国渣油的特点:胶质含量高(50%),沥 青质含量低。减压渣油的沸点很高,在FCC提升管处与催化剂接触时不会全部气化。所以是 一个气一液一固三相催化反应。采用不同孔径的分子筛催化剂进行渣油的FCC反应。 四、催化裂化反应的热力学特征
16
4.3 烃类的催化裂化反应
C
+C C C C
C
+ C C C C
特点:二烯烃最易接受氢转化为单烯烃,故产品中二
烯烃很少。
4、芳构化反应(aromatization reaction) 所有能生成芳烃的反应。也是催化裂化的主要反应。
C C C C C C C
C C
+ 6H
17
4.3 烃类的催化裂化反应
30
4.3 烃类的催化裂化反应
思考1:为什么有这些变化规律?
因为达到一定反应深度后,再加深反应,中间产物将会进 一步分解成更轻馏分,其分解速度>生成速度。
称初次反应产物再继续反应为二次反应。 思考2:二次反应对产品的产率和质量的影响?

有利方面:烯烃再异构化生成辛烷值更高的异构烃,或环 不利方面:烯烃裂化为干气,丙烯、丁烯由H转移而饱和,
第四章 催化裂化 Chapter 4 Catalytic Cracking
辽宁石油化工大学 石油化工学院 赵德智
1
本章主要内容
概述
催化裂化工艺流程 烃类的催化裂化反应 催化裂化的原料和产品 催化剂的失活与再生 流态化基本原理和流化输送 催化裂化主要设备
反应-再生系统及工艺计算
2
4.1 概述
原油一次加工
35
4.3 烃类的催化裂化反应
催化碳的计算:
催化碳=总碳-附加碳-可汽提碳 式中:总碳——再生时烧去焦碳中的总碳量; 附加碳——原料中残碳转化生成的焦碳中的碳,附
加碳=新鲜原料量×新鲜原料的残碳%×0.6%;
如常压渣油、脱沥青残渣油等,以提高经济效益。
2、尽量提高汽油辛烷值
改善原料质量、重整催化汽油中间馏分、优化操作条件、
使用高辛烷值催化剂。
3、降低能耗
降低焦炭产率、充分利用再生烟气中CO的燃烧热、发展再
生烟气热能利用技术。
7
4.1 概述
4、减少环境污染

再生烟气中的粉尘、CO、SO2和NOx; 含硫污水、产品精制时产生的碱渣; 再生烟气放空、机械设备产生的噪音。 5、过程模拟和计算机应用
H CH3 C CH3 + H+(Cat.) + CH3 CH CH3
思考1:为什么催化裂化产物中少C1、C2,多C3、C4? 正碳离子分解时不生成<C3、C4的更小正碳离子。
思考2:为什么催化裂化产物中多异构烃?
伯、仲正碳离子稳定性差,易转化为叔正碳离子。 思考3:为什么催化裂化产物中多β烯烃? 伯正碳离子易转为仲正碳离子,放出H+形成β烯烃。
5、叠合反应(condensation reaction)
烯烃与烯烃合成大分子烯烃的反应。 随叠合深度不断加深,最终将生成焦炭。与叠合相反的分 解反应占优势,故催化裂化过程叠合反应不显著。
6、烷基化反应(alkylation reaction)
烯烃与芳烃或烷烃的加合反应。
C
+
C C C C
C
C C C
常减压蒸馏:只可得10~40%的汽油、煤油、柴油等
轻质油品,其余为重质馏分和渣油。
原油二次加工
催化裂化:重质油轻质化的过程。 催化重整:生产高辛烷值汽油及轻芳烃。 催化加氢:石油馏分在氢气存在下催化加工的过程。
产品精制:提高产品质量,满足产品规格要求。
3
4.1 概述
一、催化裂化在炼油过程中的地位 催化裂化是现代化炼油厂用来改质重质馏分和渣油的 核心技术。
20
4.3 烃类的催化裂化反应
2、正碳离子机理 以正n-C16H32来说明。 (1)生成正碳离子 正n-C16H32得到一个H+,生成正碳离子。如
H n-C5H11 C C10H20 + H+ H n-C5H11 C C10H21
+
(2)β断裂 大正碳离子不稳定,容易在β位置上断裂,生成一个烯 烃和一个小正碳离子:
外扩散:反应产物分子扩散到主气流中。
27
4.3 烃类的催化裂化反应
速度最慢的步骤对整个催化裂化反应起控制作用。 (1)各类竞争吸附能力 C数相同的各类烃,被吸附的顺序为: 稠环芳烃>稠环环烷烃>烯烃>单烷基侧链的单环芳 烃>环烷烃>烷烃;
同类烃,分子量↗,越容易被吸附。
(2)各类烃的化学反应顺序 烯烃>大分子侧链的单环芳烃>异构烷烃或烷基环烷 烃>小分子侧链的单环芳烃>正构烷烃>稠环芳烃。
26
4.3 烃类的催化裂化反应
三、催化裂化反应的特点 1、气固非均相反应(inhomogeneous reaction) 原料在反应器汽化,然后在Cat.表面上反应。
外扩散:反应物分子向Cat.表面扩散; 内扩散:反应物分子向Cat.内部扩散; 吸附:反应物分子被Cat.内表面吸咐; 表面反应:Cat.内表面上发生化学反应; 脱附:反应产物分子从Cat.内表面脱附; 内扩散:反应产物分子由孔穴向外扩散;
C C C C C C C C C C C+C C C
规律:分子越大越易断裂; C原子数相同时,异构烃比正构烃容易分解。
13
4.3 烃类的催化裂化反应
(2)烯烃(olefin) 烯烃分解反应规律与烷烃相似,分解速度比烷烃快。 (3)环烷烃(cyclane) 开环生成异构烯烃;带侧链时,可能断侧链反应。
料不断变成产品。
24
4.3 烃类的催化裂化反应
(5)叠合反应 正碳离子和烯烃结合在一起,生成大分子正碳离子:
H CH3 C CH3 + H2C CH CH2 CH3 + CH3 H CH3 CH CH2 C CH2 CH3 +
ห้องสมุดไป่ตู้
(6)反应终止 正碳离子放出H+还给Cat.而变成烯烃,反应终止:
25
4.3 烃类的催化裂化反应
22
4.3 烃类的催化裂化反应
CH2 C8H17 + CH3 CH C7H16 + CH3 CH CH2 + CH2 C5H11 +
CH2 C5H11 +
相关主题