【最新整理,下载后即可编辑】PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。
重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。
难点:PWM波形的生成方法,PWM逆变电路的谐波分析。
基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。
PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
第3、4章已涉及这方面内容:第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。
本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。
本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
效果基本相同,是指环节的输出响应波形基本相同。
低频段非常接近,仅在高频段略有差异。
图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。
其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。
从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。
脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,则响应i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。
SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。
图6-3 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。
等幅PWM波和不等幅PWM波:由直流电源产生的PWM波通常是等幅PWM波,如直流斩波电路及本章主要介绍的PWM逆变电路,6.4节的PWM整流电路。
输入电源是交流,得到不等幅PWM波,如4.1节讲述的斩控式交流调压电路,4.4节的矩阵式变频电路。
基于面积等效原理,本质是相同的。
PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。
PWM波形可等效的各种波形:直流斩波电路:等效直流波形SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。
2 PWM逆变电路及其控制方法目前中小功率的逆变电路几乎都采用PWM技术。
逆变电路是PWM 控制技术最为重要的应用场合。
本节内容构成了本章的主体PWM逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。
(1)计算法和调制法1、计算法根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形。
缺点:繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化2、调制法输出波形作调制信号,进行调制得到期望的PWM波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。
调制信号波为正弦波时,得到的就是SPWM波;调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波。
结合IGBT单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补。
控制规律:u o 正半周,V1通,V2断,V3和V4交替通断,负载电流比电压滞后,在电压正半周,电流有一段为正,一段为负,负载电流为正区间,V1和V 4导通时,uo等于Ud,V4关断时,负载电流通过V1和VD3续流,uo=0,负载电流为负区间,io 为负,实际上从VD1和VD4流过,仍有uo=Ud,V4断,V3通后,io从V3和VD1续流,uo=0,uo总可得到Ud和零两种电平。
u o 负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平。
图6-4 单相桥式PWM逆变电路单极性PWM控制方式(单相桥逆变):在ur 和uc的交点时刻控制IGBT的通断。
ur正半周,V1保持通,V2保持断,当ur >uc时使V4通,V3断,uo=Ud,当ur<uc时使V4断,V3通,uo=0。
u r 负半周,V1保持断,V2保持通,当ur<uc时使V3通,V4断,uo=-Ud,当ur >uc时使V3断,V4通,uo=0,虚线uof表示uo的基波分量。
波形见图6-5。
图6-5 单极性PWM控制方式波形双极性PWM控制方式(单相桥逆变):在u r 半个周期内,三角波载波有正有负,所得PWM 波也有正有负。
在u r 一周期内,输出PWM 波只有±U d 两种电平,仍在调制信号u r 和载波信号u c 的交点控制器件通断。
u r 正负半周,对各开关器件的控制规律相同,当u r >u c 时,给V 1和V4导通信号,给V2和V3关断信号,如i o >0,V 1和V4通,如i o <0,V D1和V D 4通, u o =U d ,当u r <u c 时,给V2和V3导通信号,给V 1和V4关断信号,如i o <0,V2和V3通,如i o >0,V D 2和V D 3通,u o =-U d 。
波形见图6-6。
单相桥式电路既可采取单极性调制,也可采用双极性调制。
图6-6 双极性PWM 控制方式波形双极性PWM 控制方式(三相桥逆变):见图6-7。
三相PWM 控制公用u c ,三相的调制信号u rU 、u rV 和u rW 依次相差120°。
U 相的控制规律:当u rU >u c 时,给V 1导通信号,给V 4关断信号,u UN´=U d /2,当u rU <u c 时,给V 4导通信号,给V 1关断信号,u UN´=-U d /2;当给V 1(V 4)加导通信号时,可能是V 1(V 4)导通,也可能是V D1(V D4)导通。
u UN´、 图6-7 三相桥式PWM 型逆变电路u VN´和u WN´的PWM 波形只有±U d /2两种电平,u UV 波形可由u UN´-u VN´得出,当1和6通时,u UV =U d ,当3和4通时,u UV =-U d ,当1和3或4和6通时,u UV =0。
波形见图6-8。
输出线电压PWM 波由±U d 和0三种电平构成,负载相电压PWM 波由(±2/3)U d 、(±1/3)U d 和0共5种电平组成。
图6-8 三相桥式PWM 逆变电路波形 防直通死区时间:同一相上下两臂的驱动信号互补,为防止上下臂直通造成短路,留一小段上下臂都施加关断信号的死区时间。
死区时间的长短主要由器件关断时间决定。
死区时间会给输出PWM 波带来影响,使其稍稍偏离正弦波。
特定谐波消去法(Selected Harmonic Elimination PWM —SHEPWM): 计算法中一种较有代表性的方法,图6-9。
输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。
为减少谐波并简化控制,要尽量使波形对称。
首先,为消除偶次谐波,使波形正负两半周期镜对称,即:)()(πωω+-=t u t u (6-1)图6-9 特定谐波消去法的输出PWM 波形其次,为消除谐波中余弦项,使波形在半周期内前后1/4周期以π/2为轴线对称。
)()(t u t u ωπω-= (6-2)四分之一周期对称波形,用傅里叶级数表示为:∑∞==,...5,3,1n sin )(n t n a t u ωω (6-3)式中,a n 为 ⎰=20n sin )(4πωωωπt td n t u a图6-9,能独立控制a 1、a 2和a 3共3个时刻。
该波形的a n 为)cos 2cos 2cos 21(2])sin 2(sin 2)sin 2(sin 2[4321d 23d 0n 32211αααπωωωωωωωωππn n n n U t d t n U t td n U t d t n U t td n U a a d a a d a a a d -+-=-++-+=⎰⎰⎰⎰ (6-4)式中n=1,3,5,…确定a 1的值,再令两个不同的a n =0,就可建三个方程,求得a 1、a 2和a 3。
消去两种特定频率的谐波:在三相对称电路的线电压中,相电压所含的3次谐波相互抵消,可考虑消去5次和7次谐波,得如下联立方程:)cos 2cos 2cos 21(2321d 1αααπ-+-=U a 0)7cos 27cos 27cos 21(720)5cos 25cos 25cos 21(52321d 7321d 5=-+-==-+-=αααπαααπU a U a(6-5)给定a 1,解方程可得a 1、a 2和a 3。
a 1变,a 1、a 2和a 3也相应改变。
一般,在输出电压半周期内器件通、断各k 次,考虑PWM 波四分之一周期对称,k 个开关时刻可控,除用一个控制基波幅值,可消去k -1个频率的特定谐波,k 越大,开关时刻的计算越复杂。
除计算法和调制法外,还有跟踪控制方法,在6.3节介绍(2)异步调制和同步调制载波比——载波频率f c 与调制信号频率f r 之比,N= f c / f r 。
根据载波和信号波是否同步及载波比的变化情况,PWM 调制方式分为异步调制和同步调制:1、异步调制异步调制——载波信号和调制信号不同步的调制方式。
通常保持f c 固定不变,当f r 变化时,载波比N 是变化的。
在信号波的半周期内,PWM 波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称。
当f r 较低时,N 较大,一周期内脉冲数较多,脉冲不对称的不利影响都较小,当f r 增高时,N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大。