当前位置:文档之家› 传感器与检测技术课后题答案

传感器与检测技术课后题答案

4.13举例说明变磁阻式传感器、变压器式传感器、螺线管式传感器和电涡流式传感器的应用,并分析工作原理。
5.1根据电容式传感器的工作时变换参数的不同,可以将电容式传感器分为哪几种类型?各有何特点?
变面积式、变极距式、变介电常数
5.2一个以空气为介质的平板电容式传感器结构如图5-3a所示,其中a=10mm、b=16mm,两极板间距 。测量时,一块极板在原始位置上向左平移了2mm,求该传感器的电容变化量、电容相对变化量和位移灵敏度 (已知空气的相对介电常数 ,真空时的介电常数 )。
第三章思考题和习题
3.1应变电阻式传感器的工作原理是什么?
电阻应变式传感器的工作原理是基于应变效应的。
当被测物理量作用在弹性元件上,弹性元件在力、力矩或压力等作用下发生形变,变换成相应的应变或位移,然后传递给与之相连的应变片,将引起应变敏感元件的电阻值发生变化,通过转换电路变成电量输出。输出的电量大小反映了被测物理量的大小。
2.12在某二阶传感器的频率特性测试中发现,谐振发生在频率216Hz处,并得到最大的幅值比为1.4,试估算该传感器的阻尼比和固有角频率的大小。
解:二阶系统
当 时共振,则
所以:
2.13设一力传感器可简化为典型的质量-弹簧-阻尼二阶系统,已知该传感器的固有频率 ,若其阻尼比为0.7,试问用它测量频率为600Hz、400Hz的正弦交变力时,其输出与输入幅值比 和相位差 各为多少?
灵敏度提高一倍。
非线性得到改善。
4.5试分析交流电桥测量电路的工作原理。
电感式传感器用交流电桥测量时,把传感器的两个线圈作为电桥的两个桥臂,另外两个相邻桥臂用纯电阻代替。当衔铁处于中间位置时,电桥无输出;
当衔铁上移时, ,电桥输出电压与气隙厚度的变化量 成正比;
当衔铁下移时,
因输入是交流电压,所以可以根据输出电压判断衔铁位移大小,当可能辨别方向。
第1章概述
1.1什么是传感器?
传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
1.2传感器的共性是什么?
传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。
4.6试分析变压器式交流电桥测量电路的工作原理。
变压器式交流电桥本质上与交流电桥的分析方法一样。电桥两臂 为传感器线圈阻抗,另外两个桥臂为交流变压器二次绕组阻抗的一半。
当传感器的衔铁位于中间位置时,输出电压为0,电桥处于平衡状态。
当传感器衔铁上移时,
当传感器衔铁下移时, ,可得到与交流电桥完全一致的结果。
3.2电阻应变片的种类有哪些?各有何特点?
按组成材料有金属和半导体之分,金属应变片受力时,主要是基于应变效应,是引起应变片的外形变化进而引起电阻值变化,而半导体应变片时基于压阻效应工作的,当受力时,引起应变片的电阻率变化进而引起电阻值变化。
按结构形式有丝式和箔式之分。丝式是应变金属丝弯曲成栅式结构,工艺简单,价钱便宜。箔式是采用光刻和腐蚀等工艺制成的,工艺复杂,精度高,价钱较贵。
4.11电涡流式传感器的线圈机械品质因素会发生什么变化?为什么?
产生电涡流效应后,由于电涡流的影响,线圈复阻抗的实部(等效电阻)增大、虚部(等效电感)减小,因此,线圈的等效机械品质因素下降。
4.12为什么电涡流式传感器被归类为电感式传感器?它属于自感式还是互感式?
电涡流式传感器的等效电气参数都是互感系数 的函数。通常总是利用其等效电感的变化组成测量电路,因此,电涡流式传感器属于(互感式)电感式传感器。
4.3已知变气隙厚度电感式传感器的铁芯截面积 ,磁路长度 ,相对磁导率 ,气隙 , ,真空磁导率 ,线圈匝数 ,求单线圈式传感器的灵敏度 。若将其做成差动结构,灵敏度如何变化?
解:
所以: ,
做成差动结构形式灵敏度将提高一倍。
4.4差动变磁阻式传感器比单圈式变磁阻式传感器在灵敏度和线性度方面有什么优势?为什么?
原因有三:(1)传感器的两个次级绕组的电气参数不同和几何尺寸不对称(2)磁性材料的磁化曲线的非线性(3)励磁电压本身含高次谐波。
消除方法:(1)尽可能保证传感器的几何尺寸、绕组线圈电气参数和磁路的对称;(2)采用适当的测量电路,如相敏整流电路。
4.9在使用螺线管式传感器时,如何根据输出电压来判断衔铁的位置?
解: ,已知 ,所以

由 得 ,
所以
3.6一个量程为10kN的应变式测力传感器,其弹性元件为薄壁圆筒轴向受力,外径20mm,内径18mm,在其表面粘贴八个应变片,四个沿轴向粘贴,四个沿周向粘贴,应变片的电阻值均为 ,灵敏度为2.0,泊松比为0.3,材料弹性模量为 ,要求:
(1)绘出弹性元件贴片位置及全桥电路。
3.3引起电阻应变片温度误差的原因是什么?电阻应变片的温度补偿方法是什么?
一是电阻温度系数,二是线膨胀系数不同。
单丝自补偿应变片,双丝组合式自补偿应变片,补偿电路
3.4试分析差动测量电路在应变式传感器中的好处。
灵敏度提高一倍,非线性得到改善。
3.5如果将100 应变片粘贴在弹性元件上,试件截面积 ,弹性模量 ,若 的拉力引起应变计电阻变化为 ,求该应变片的灵敏度系数。
重复性最大偏差为 ,所以
2.4什么是传感器的动态特性?如何分析传感器的动态特性?
传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。
传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。瞬态响应常采用阶跃信号作为输入,频率响应常采用正弦函数作为输入。
常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。
2.3利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。设压力为0MPa时输出为0mV ,压力为0.12MPa时输出最大且为16.50mV.
非线性误差略
正反行程最大偏差 ,所以
2.5描述传感器动态特性的主要指标有哪些?
零阶系统常采用灵敏度 ,一阶系统常采用时间常数 、灵敏度 ,二阶系统常采用固有频率 、阻尼比 、灵敏度 来描述。
2.6试解释线性时不变系统的叠加性和频率保持特性的含义及其意义。
当检测系统的输入信号是由多个信号叠加而成的复杂信号时,根据叠加性可以把复杂信号的作用看成若干简单信号的单独作用之和,从而简化问题。
解:一阶传感器频率响应特性: ,幅频特性:
由题意有 ,即
又 ,所以 ,取
幅值误差:
相位误差:
2.8某温度传感器为时间常数 的一阶系统,当传感器受突变温度作用后,试求传感器温差的三分之一和二分之一所需的时间。
温差为二分之一时,t=2.08s
温差为三分之一时,t=1.22s
2.9玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。现已知某玻璃水银温度计特性的微分方程是 ,y代表水银柱高(m),x代表输入温度(℃)。求该温度计的时间常数及灵敏度。
第4章
4.1根据工作原理的不同,电感式传感器可分为哪些种类?
可分为变磁阻式(自感式)、变压器式和涡流式(互感式)
4.2试分析变气隙厚度变磁阻式电感式传感器的工作原理。
当被测位移变化时,衔铁移动,气隙厚度发生变化,引起磁路中磁阻变化,从而导致线圈的电感值变化。通过测量电感量的变化就能确定衔铁位移量的大小和方向。
解:(1)电容变化量
5.3试讨论变极距型电容式传感器的非线性及其补偿方法。
差动结构
5.4有一个直径为2m、高5m的铁桶,往桶内连续注水,当注水数量达到桶容量的80%时停止,试分析用应变片式传感器或电容式传感器来解决该问题的途径和方法。
采用应变式传感器时,把应变片贴在圆筒的外壁上,电阻分别受纵向和横向应变,并把应变电阻组成差动结构的测量电路。
答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。
2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化?
答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。
变介电常数型电容传感器测液位(差分式),通过测量水内的重力,来控制注水数量。
5.5试分析电容式厚度传感器的工作原理。
5.6试推导图5-19所示变介质型电容式位移传感器的特性方程C=f(x)。设真空的介电常数为 ,图中 ,极板宽度为W。其他参数如图5-19所示。
=1s ;
2.10某传感器为一阶系统,当受阶跃函数作用时,在t=0时,输出为10mV,在t=5s时,输出为50mV;在 时,输出为100mV。试求该传感器的时间常数。
=8.5s
2.11某一质量-弹簧-阻尼系统在阶跃输入激励下,出现的超调量大约是最终稳态值的40%。如果从阶跃输入开始至超调量出现所需的时间为0.8s,试估算阻尼比和固有角频率的大小。
活动衔铁在中间时,输出电压=0;
活动衔铁位于中间位置以上时,输出电压与输入电压同频同相;
活动衔铁位于中间位置以下时,输出电压与输入电压同频反相。
需要采用专门的相敏检波电路辨别位移的方向
4.10?
相敏检波电路的原理是通过鉴别相位来辨别位移的方向,即差分变压器输出的调幅波经相敏检波后,便能输出既反映位移大小,又反映位移极性的测量信号。经过相敏检波电路,正位移输出正电压,负位移输出负电压,电压值的大小表明位移的大小,电压的正负表明位移的方向。
1.5传感器技术的发展趋势有哪些?
(1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化
(5)传感器的微型化
1.6改善传感器性能的技术途径有哪些?
(1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制
相关主题