当前位置:文档之家› 高中物理牛顿运动定律的应用解析版汇编含解析

高中物理牛顿运动定律的应用解析版汇编含解析

高中物理牛顿运动定律的应用解析版汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E =(3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.3.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

【答案】(1)5m/s 2 2m/s 2(2)14m (3)12m 【解析】 【分析】(1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移. 【详解】(1)由题意知,冲上木板后木块做匀减速直线运动,初速度 v 0=14m/s ,加速度大小 212a μg 5m /s ==木板由静止做匀加速度直线运动 即 ()212μmg μM m g Ma -+=解得 22a 2m /s =(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。

设此过程所用时间为t即 012v v a t v a t =-==木板木块 解得 t=2s木块位移 2011x v t a t 18m 2木块=-= 木板位移 221x a t 4m 2木板== 木板长度 L x x 14m =-=木板木块(3)木块木板达到共同速度后将一起作匀减速直线运动,分析得2231v a t 4m /s a μg 1m /s ====共,木板位移 23vx8m 2a ==,共木板总位移 ,x x x 12m =+=木板木板4.传送带以恒定速率v =4m/s 顺时针运行,传送带与水平面的夹角θ=37°.现将质量m =1 kg 的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F =10 N 拉小物块,经过一段时间物块被拉到离地高为H =1.8m 的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g 取10m/s 2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F ,则物块还需多少时间才能脱离传送带? 【答案】(1)1s (2)【解析】 【详解】(1)物体在达到与传送带速度v =4 m/s 相等前,做匀加速直线运动,有: F +μmgcos37°-mgsin37°=ma 1 解得a 1=8 m/s 2由v =a 1t 1 得t 1=0.5s 位移x 1=a 1t 12=1m物体与传送带达到共同速度后,因F -mgsinθ=4 N =μmgcos37° 故物体在静摩擦力作用下随传送带一起匀速上升. 位移x 2=-x 1=2mt 2==0.5s总时间为t =t 1+t 2=1s(2)在物体与传送带达到同速瞬间撤去恒力F ,因为μ<tan37°,故有: mgsin37°-μmgcos37°=ma 2 解得:a 2=2m/s 2假设物体能向上匀减速运动到速度为零,则通过的位移为x ==4 m>x2故物体向上匀减速运动达到速度为零前已经滑上平台.故x2=vt3-a2t32解得t3=(2-)s或t3=(2+)s(舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.5.研究物体的运动时,常常用到光电计时器.如图所示,当有不透光的物体通过光电门时,光电计时器就可以显示出物体的挡光时间.光滑水平导轨MN上放置两个物块A和B,左端挡板处有一弹射装置P,右端N处与水平传送带平滑连接,将两个宽度为d=3.6×10-3m 的遮光条分别安装在物块A和B上,且高出物块,并使遮光条在通过光电门时挡光.传送带水平部分的长度L=9.0m,沿逆时针方向以恒定速度v=6.0m/s匀速转动。

物块B与传送带的动摩擦因数μ=0.20,物块A的质量(包括遮光条)为m A =2.0kg。

开始时在A和B之间压缩一轻弹簧,锁定其处于静止状态,现解除锁定,弹开物块A和B,迅速移去轻弹簧.两物块第一次通过光电门,物块A通过计时器显示的读数t1=9.0×10-4s,物块B通过计时器显示的读数t2=1.8×10-3s,重力加速度g取10m/s2,试求:(1)弹簧储存的弹性势能E p;(2)物块B在传送带上滑行的过程中产生的内能;(3)若物体B返回水平面MN后与被弹射装置P弹回的A在水平面上相碰,碰撞中没有机械能损失,则弹射装置P必须对A做多少功才能让B碰后从Q端滑出。

【答案】(1)E p=24J;(2)Q=96J;(3)84JW>。

【解析】【分析】【详解】(1)解除锁定,弹开物块AB后,两物体的速度大小v A=3413.610m/s 4.09.010dt--⨯==⨯m/sv B=3323.610m/s 2.01.810dt--⨯==⨯m/s由动量守恒有m A v A =m B v B得m B =4.0kg弹簧储存的弹性势能22112422p A A B B E m v m v =+=J (2)B 滑上传送带先向右做匀减速运动,当速度减为零时,向右滑动的距离最远由牛顿第二定律得B B m g m a μ=所以B 的加速度a =2.0m/s 2B 向右运动的距离212Bv x a==1.0m <9.0m物块将返回向右运动的时间为1 1.0Bv t a==s 传送带向左运动的距离为21x vt ==6.0mB 相对于传送带的位移为112x x x ∆=+物块B 沿传送带向左返回时,所用时间仍然为t 1,位移为x 1 B 相对于传送带的位移为221x x x ∆=-物块B 在传送带上滑行的过程中产生的内能22()B Q m g x x μ=⋅∆+∆=96J(3)设弹射装置给A 做功为W ,根据功能关系有221122A A A A m v m v W '=+ AB 碰相碰,碰前B 的速度向左为2B v =m/s ,碰后的速度设为'Bv 规定向右为正方向,根据动量守恒定律和机械能守恒定律得A AB B A A B B m v m v m v m v '=+'-''碰撞过程中,没有机械能损失222211112222A AB B A A B B m v m v m v m v ''+''+=B 要滑出平台Q 端,由能量关系有212B BB m v m gL μ>'所以由得W>84J6.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫7.如图所示,始终绷紧的水平传送带以的恒定速率沿顺时针方向转动,质量的平板车停在传送带的右端.现把质量可视为质点的行李箱轻轻放到距传送带右端位置.行李箱与传送带、平板车间的动摩擦因数分别为、,平板车与水平地面间的动摩擦因数为.(不计空气阻力,g=10m/s2)试求:(1)行李箱在传送带上运动的时间(2)若行李箱由传送带滑到平板车上时速度不变,要想行李箱恰不从平板车上滑出,平板车的最小长度.【答案】(1)2.25s (2)见解析【解析】(1)行李箱在传送带加速时的加速度满足,则行李箱在传送带能加速的时间,能加速的距离,所以行李箱在传送带上先加速后匀速。

相关主题