当前位置:文档之家› mos场效应晶体管

mos场效应晶体管


4. P沟耗尽型MOS管及转移特性
4.2.3 MOS 场效应晶体管的输出特性
同双极型晶体管一样,场效应晶体管的许多基本特性 可以通过它的特性曲线表示出来。
N 沟 MOS 场效应晶体管的偏置电压
它的输出特性曲线则如下图所示: 下面分区进行讨论:
1. 可调电阻区(线性工作区) 可归纳为:外加栅压UGS增大,反型层厚度增加,因而 漏源电流随UDS线性增加,其电压-电流特性如上图中 UGS=5V曲线中的OA段所示。
实际 MOS 结构的阀值电压为:
UT
U FB
U OX
2 F
QOX QB max COX
UDS较小时,导电沟道随UGS的变化
a) UGS< UT 没有沟道 b) UGS> UT 出现沟道 c) UGS>>UT 沟道增厚
2. 饱和工作区 此时的电流-电压特性对应与特性图中UGS=5V曲线的AB段。
导电沟道随UDS的变化
a) UDS很小沟道电阻式常数 b) UDS=UDSat开始饱和 c) UDS>>UDSat漏极电流不再增加
可以得出使沟道夹断进入饱和区的条件为UDS>>UGS-UT .
3. 击穿工作区 此时的电流-电压特性曲线对应于特性图中UGS=5V的BC段。
四种 MOS 晶体管的结构、接法和特性曲线
a) N沟道增强型 b) N沟道耗尽型 c) P沟道增强型 d) P沟道耗尽型
4.3 MOS场效应晶体管的阀值电压
qms
(qm
qs ) qm
(q
Eg 2
q F ) 0
UG=0 时理想 MOS 二极管的能带图
2)在任何偏置条件下,MOS结构中的电荷仅位于半导体 之中,而且与邻近氧化层的金属表面电荷数量大小相 等,但符号相反。
3)氧化膜是一个理想的绝缘体,电阻率为无穷大,在直 流偏置条件下,氧化膜中没有电流通过。
MOS 电容等效示意图
在平带条件下对应的总电容称为MOS 结构的平带电容CFB
C FB
tOX
OX 0
1 2
OX S
LD
右图表示了P型半 导体MOS结构的理 想C-U曲线
MOS电容-电压曲线
4.1.2 实际MOS 结构及基本特性
几种影响理想MOS结构的特性 1.功函数差的影响
左图为几种主要硅栅极材料 的功函数差随浓度的变化
4.3.1 阀值电压
1. MOS 结构中的电荷分布 对于MOS 结构的P型半导体,其费米势为:
F
T
q
ln
NA ni
左图给出了 MOS 结 构强反型时的能 带图和电荷分布 图。
a) 能带图
b) 电荷分布图
2. 理想 MOS 结构的阀值电压
理想MOS 结构是指忽略氧化层中的表面态电荷密度, 且不考虑金属-半导体功函数差时的一种理想结构。
理想 MOS 结构的阀值电压为
UT
0
QB max COX
2
F
3. 实际 MOS 结构的阀值电压
在实际的 MOS 结构中,存在表面态电荷密度QOX和金属-半导 体功函数差фms。 因此,在实际MOS结构中,必须用一部分栅压去抵消它们的 影响。才能使MOS结构恢复到平带状态,达到理想MOS结构 状态。
电势与距离的关系,可由 一维泊松方程求得
d 2
dx2
(x) 0 S
对泊松方程积分,可得表面耗尽区的静电势分布为
s
(1
x W
)2
表面势ψs为
s
qN AW 2
2 0 S
此电势分布与单边PN+结相同。
3.理想MOS结构的电容-电压特性 MOS 结构的总电容C是由氧化膜电容COX与半导体表面 空间电荷区的微分电容Cd串联组成,如下图所示
在实际的MOS结构中,金属-半导体功函数差不等于零, 半导体能带需向下弯曲,如图所示,这是因为在热平衡 状态下,金属含正电荷,而半导体表面则为负电荷
为了达到理想平带状况,需要外加一个相当于功函数 差qфms的电压,使能带变为如下图所示的状况。
平带情况
2.氧化层中电荷的影响
在通常的SiO2-Si结构中包括以下四种情况,如下图 系 统 电 荷 示 意 图
MOS 场效应晶体管基本结构示意图
2. MOS管的基本工作原理 MOS 场效应晶体管的工作原理示意图
4.2.2 MOS 场效应晶体管的转移特性
MOS 场效应晶体管可分为以下四种类型:N沟增强型、 N沟耗尽型、P沟增强型、P沟耗尽型。 1. N沟增强型MOS管及转移特性
2. N沟耗尽型MOS管及转移特性 3.P沟增强型MOS管及转移特性
0
对于N型半导体,
F
T q
ln( ND ) 0 ni
静电势ψ的定 义如图所示
而空穴和电子的浓度也可表示为ψ的函数
pP
ni
exp
q F
T
nP
ni
exp
q
T
F
当能带如上图所示向下弯曲时,ψ为正值,表面载流子的浓度 分别为
ns
ni
exp
q( s
T
F
ps
ni
exp
q( F
T
s
通过以上讨论,以下各区间的表面电势可以区分为: Ψs<0空穴积累(能带向上弯曲); Ψs=0平带情况; ΨF>Ψs>0空穴耗尽(能带向下弯曲); ΨF=Ψs 表面上正好是本征的ns=ps=ni ΨF<Ψs 反型情况(反型层中电子积累,能带向下弯曲)。
1)界面中陷阱电荷 2)氧化层中的固定电荷 3)氧化层陷阱电荷 4)可中电荷都存在时, MOS结构的平带电压为
U FB
ms
QOX COX
4.2 MOS 场效应晶体管的工作原理与基本特性
4.2.1 MOS 场效应晶体管的基本工作原理 1. MOS 晶体管的基本结构
理想 MOS 二极管不同 偏压下的能带图及 电荷分布
a) 积累现象
b) 耗尽现象
c) 反型现象
2.表面势与表面耗尽区
下图给出了P型半导体MOS结构在栅极电压UG>>0情况 下更为详细的能带图。
在下面的讨论中,定义与费米能级相对应的费米势为
F
(Ei
EF )体内 q
因此,对于P型半导体, F
T
q
ln( N A ) ni
4.1 MOS结构与基本性质
4.1.1 理想MOS结构与基本性质
MOS结构指金属-氧化物-半导体结构。 为便于讨论,规定在金属栅上所加电压UG相对于P型半导体衬
底为正,称为正向偏置电压;反之则为反向偏置电压。
MOS 二极管结构 a) 透视图 b) 剖面图
1.理想MOS二极管的定义与能带
1)在外加零偏压时,金属功函数与半导体函数之间没 有能量差,或两者的功函数差qφms为零
相关主题