对称性原理
--------化学中的各种对称性化学系11级3班16号贠吉星
摘要:化学科学自身有着丰富的哲学内涵,它于物理学有着密切的联系,物理中存在的对称现象,在化学中也存在。
这里,仅从
分子的手性,手性以及晶体结构三个方面的理论问题做一论述。
关键词:对称极性手性晶体结构
“对称性”一词在我们的生活中并不陌生。
它是人们在观察
和认识自然的过程中产生的一种观念。
在物理学中,对称性可以理解为一个运动,这个运动保持一个图案或一个物体的形状在外表上不发生变化。
在自然界千变万化的运动演化过程中,运动的多样性显现出了各式各样的对称性。
对称的现象无所不在,不仅存在于物理学科,也存在于化学乃至自然界。
对称性在化学界有着广泛的应用。
通过对化学一年多的学习,我浅显的了解到化学中存在的一些对称现象。
这些对称现象既深奥,又充满趣味。
分子的极性
在化学这门科学中,从微观的角度讲,分子可分为极性分子和非极性分子。
而非极性分子(non-polar molecule)就具有对称性,它是指原子间以共价键结合,分子里电荷分布均匀,正负电荷中心重合的分子(此定义来自百度百科)。
也就是说,在非极性分子中正负电荷中心重合,从整个分子来看,电荷分布是均匀的,对称的。
它大概可以分为两种情况:1)当分子中各键全部为非极性键,分子是非极性的(臭氧除外)。
例如,H2、O2、N2。
2)当一个分子中各个键完全相同,都为极性键,但分子的构型是对称的,则该分子也是非极性的。
例如,CO2、CH4、C2H2、BF3等
区分极性分子和非极性分子的方法有以下几种:
1、中心原子化合价法:
组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5
2、受力分析法:
若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分子.如:CO2,C2H4,BF3
3、同种原子组成的双原子分子都是非极性分子。
4、简单判断方法
对于AnBm型 n=1 m>1 若A化合价等于主族数则为非极性 分子的手性
手性(chirality)一词源于希腊语词干“手”χειρ
(ch[e]ir~),在多种学科中表示一种重要的对称特点。
如果某物体与其镜像不同,则其被称为“手性的”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。
手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称对应异构体。
可与其镜像叠合的物体被称为非手性的(achiral),有时也称为双向的(amphichiral)。
手性及手性物质只有两类:左手性和右手性。
有时为了对比,另外加上一种无手性(也称“中性手性”)。
左手性用learus
或者L表示,右手性用dexter或者D表示,中性手性用M表示。
除了利用偏光照射所产生的角度偏差正负值相反外,对映异构体在化学特性、物理特性上大致相同。
一个化合物的分子与其镜像不能互相叠合,则必然存在一个与镜像相应的化合物,这两个化合物之间的关系,相当于左手和右手的关系,即互相对映。
这种互相对应的两个化合物成为对映异构体(enantiomers)。
这类化合物分子成为手性分子(chiral molecule)。
不具对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,镜面不对称性是识别手性分子与非手性分子的基本标志。
起了科学家的兴趣。
然而,手性分子是如何形成的却一直让人迷惑不解。
过去,生物化学领域趋向于认为,单一手性形式的分子合成通常从一开始就要利用手性本体,也就是说生物分子自身在催化着手性形式的形成。
而且在一些化学反应中手性产物的形成进一步扩大了。
2006年6月16日出版的英国《自然》刊发文章称,最近,美国研究人员发现,物质的固(体)-液(体)相平衡可能参与了生物分子手性的形成。
比如,氨基酸固(体)-液(体)相的平衡,可以由刚开始时的小小的不平衡导致严重偏向一种手性形式,即左旋或右旋。
而这种现象出现在水溶液中,因而也可以解释生命起源以前的左手性和右手性,即为何左右手性数量相当的分子为何会转变成生物分子偏爱一种手性。
而物质世界中有活性作用的分子常常是左旋,如左旋糖苷。
作为生命的基本结构单元,氨基酸也有手性之分。
也就是说,生命最基本的东西也有左右之分。
惊人的发现---组成地球生命体的几乎都是左旋氨基酸,而没有右旋氨基酸
我们已经发现的氨基酸有20多个种类,除了最简单的甘氨酸以外,其它氨基酸都有另一种手性对映体!那么,是不是所有的氨基酸都是手性的呢?答案是肯定的,检验手性的最好方法就是,让一束偏振光通过它,使偏振光发生左旋的是左旋氨基酸,反之则是右旋氨基酸。
通过这种方法的检验,人们发现了一个令
人震惊的事实,那就是除了少数动物或昆虫的特定器官内含有少量的右旋氨基酸之外,组成地球生命体的几乎都是左旋氨基酸,而没有右旋氨基酸!
右旋分子是人体生命的克星!
因为人是由左旋氨基酸组成的生命体,它不能很好地代谢右旋分子,所以食用含有右旋分子的药物就会成为负担,甚至造成对生命体的损害。
地球上没有右旋氨基酸生命,但是,按照手性的原则,它们确实是可能存在的,甚至,有智慧的右旋氨基酸生命也是存在的。
晶体的对称性
据此前提,与群论原理相结合,可严格论证,晶体结构可能具有的对称动作群有230种,是谓晶体学空间群;与晶体理想外
形与宏观物理性质对应的对称类型有32种,称作晶体学点群;与晶体衍射对称类型对应的有11种,称为劳厄群。
又,根据晶体的晶系特征对称元素,将晶体划分为7个晶系。
上述这些均属晶体学对称性范畴。
至于准晶体的特殊对称性,属广义晶体学的分支,则又当别论。
综上三方面所述,对称现象在化学中的应用很多。
这只是对称现象中的部分应用,还有更多的知识吸引我们去探索。