影响硬化混凝土的耐久性的因素及提高耐久性的研究
摘要:通过对影响混凝土的耐久性因素的分析,结合现在的施工经验,简述如何提高混凝土的耐久性措施。
关键词:耐久性碱—骨料反映腐蚀
混凝土耐久性问题,是指结构在所使用的环境下,由于内部原因或外部原因引起结构的长期演变,最终使混凝土丧失使用能力。
即所为的耐久性失效,耐久性失效的原因很多,有抗冻失效,碱—骨料反应失效,化学腐蚀失效,钢筋锈蚀造成结构破坏等。
造成混凝土耐久性不佳的原因多种多样,主要可分为:(1)物理破坏:由温度变化引起的收缩膨胀裂缝(这是由于混凝土内骨料和硬化水泥浆体不同的温度膨胀系数而引起),如冻融循环、除冰盐分对混凝土的剥蚀等:(2)化学破坏:由混凝土内部材料引起的碱骨料反应以及外部侵蚀性离子(Gl-)引起的诸如钢筋锈蚀、硫酸盐侵蚀(SO42-)以及碳化(CO2)等;(3)机械破坏:冲击、磨损、流动淡水溶蚀作用、流动气体的磨蚀、冲蚀等(如道路、水利混凝土)。
下面作具体分析。
混凝土的冻融破坏结构处于冰点以下环境时,部分混凝土内孔隙中的水将结冰,产生体积膨胀,过冷的水发生迁移,形成各种压力,当压力达到一定程度时,导致混凝土的破坏。
混凝土发生冻融破坏的最显著的特征是表面剥落,严重时可以露出石子。
混凝土的抗冻性能与混凝土内部的孔结构和气泡含量多少密切相关。
孔越少越小,破坏作用越小,封闭气泡越多,抗冻性越好。
影响混凝土抗冻性的因素,除了孔结构和含气量外,还包括:混凝土的饱和度,水灰比,混凝土的龄期,集料的孔隙率及其间的含水率等。
混凝土的碱-集料反应混凝土的碱-集料反应,是指混凝土中的碱与集料中活性组分发生的化学反应,引起混凝土的膨胀,开裂,甚至破坏。
因反应的因素在混凝土内部,其危害作用往往是不能根冶的,是混凝土工程中的一大隐患。
许多国家因碱-集料反应不得不拆除大坝,桥梁,海堤和学校,造成巨大损失,国内工程中也有碱-集料反应损害的类似报道,一些立交桥,铁道轨枕等发生不同程度的膨胀破坏。
混凝土碱-集料反应需具备三个条件,即有相当数量的碱,相应的活性集料,水份。
反应通常有三种类型:碱-硅酸反应,碱-碳酸盐反应,慢膨胀型碱-硅酸盐反应,避免碱-集料反应的方法可采用:①尽量避免采用活性集料;②限制混凝土的碱含量;③掺用混合材。
化学侵蚀当混凝土结构处在有侵蚀性介质作用的环境时,会引起水泥石发生一系列化学,物理与物化变化,而逐步受到侵蚀,严重的使水泥石强度降低,以至破坏。
常见的化学侵蚀可分为淡水腐蚀,一般酸性水腐蚀,碳酸腐蚀,硫酸盐腐蚀,镁盐腐蚀五类。
淡水的冲刷,会溶解水泥石中的组分,使水泥石孔隙增加,密实度降低,从而进一步造成对水泥石的破坏;研究表明,当水泥石中的氧化钙溶出5%时,强度下降7%,当溶出24%时,强度下降29%,因此,淡水冲刷会对水工建筑有一定影响;而当水中溶有一些酸类时,水泥石就受到溶淅和化学溶解双重作用,腐蚀明显加速,这类侵蚀常发生在化工厂;碳酸对混凝土的影响主要为:在溶淅水泥石的同时,破坏混凝土内的碱环境,降低水泥水化产物的稳定性,影响水泥石的致密度,造成对混凝土的侵蚀;硫酸盐的腐蚀则表现为SO42-离子深入混凝土内与水泥组分反应,生成物体积膨胀开裂造成损坏;海水中由于存在多种离子,侵蚀形式较为复杂,但主要是由于镁盐使硬化水泥石的结构组分分解,同时硫酸盐作用会造成对水泥石的损坏,而氧化镁沉淀会堵塞混凝土孔隙,会使海水侵蚀有所缓和。
钢筋的锈蚀钢筋的锈蚀,其一表现为钢筋在外部介质作用下发生电化反应,逐步生成氢氧化铁等即铁锈,其体积比原金属增大2-4倍,造成混凝土顺筋裂缝,从而成为腐蚀介质渗入钢筋的通道,加快结构的损坏。
氢氧化铁在强碱溶液中会形成稳定的保护层,阻止钢筋的锈蚀,但碱环境被破坏或减弱,则会造成钢筋的锈蚀,如混凝土的碳化或中性化。
造成混凝土碳化和中性化的原因,主要是混凝土的密实度即抗渗性不足,酸性气体(如CO2,SO2,H2S,HCL,NO2)渗入混凝土内与氢氧化钙作用;其二,氯离子对钢筋表面钝化膜有特殊的破坏作用,当混凝土中氯含量超过标准时,钢筋会锈蚀,而水和氧的存在是钢筋被腐蚀的必要条件,因此,若混凝土开裂,造成水和氧的通道,则钢筋锈蚀加速,促成混凝土裂缝进一步开展,混凝土保护层剥落,最终使构件失去承载力。
使用方面的因素。
有些旧建筑物已经使用好几十年了,已满足不了现代发展的使用要求,这些建筑物经常处于超负荷运转中,由于费用等因素的影响使用单位往往忽视对建筑物早期的防腐处理和必要的维修加固,缩短了建筑物的使用寿命。
提高混凝土耐久性的途径混凝土的耐久性是一个十分复杂的综合性问题,不仅与所使用的材料本身有关,还与混凝土结构所处的环境条件(包括温湿度、结构物周围的水和土壤中的侵蚀性离子、空气中的侵蚀性成分等)紧密相连,因此要系统提高混凝土的耐久性,必须先将环境条件调查清楚,再结合混凝土所采用的材料进行耐久性设计。
日本是最早对混凝土耐久性设计和预测进行研究的国家,已有系统的设计纲目和预测参数。
根据日本专家调查得出的各类混凝土的实际使用寿命为田:一般混凝土制品20年、桥梁工程寿命50年、混凝土坝寿命100年,并以此制定了钢筋混凝土建筑物的设计寿命。
系统的耐久性设计纲目基本内容包括:(1)按照建筑物的劣化状态将耐久性设计目标分为100、65、30年3个等级;(2)劣化外力分为一般劣化外力和特殊劣化外力;(3)相应的设计施工标准方法。
英国在20世纪80年代修订的混凝土结构规范中增加了大量的耐久性条款,根据暴露环境条件的严酷程度对最小保护层厚度、混凝土强度、抗冻性、最大水灰比、水泥品种、最小水泥用量、最大胶结材料用量(水泥+矿物掺合料)、引气量、集料要求等等都作了具体规定,对按照耐久性要求设计混凝土结构工程起到了很好的指导作用。
我国的黄士元、刘崇熙等专家于20世纪90年代初就提出了“按耐久性设计混凝土”的思想,经过10多年的发展,越来越为建筑工程界和材料界所认识。
但是总的说来,我国在按耐久性设计混凝土方面还有大量的工作和实际问题需要不断研究和解决。
综合以上,提高混凝土国内外主要从以下几方面考虑:
原材料的选择,水泥水泥类材料的强度和工程性能,是通过水泥砂浆的凝结,硬化形成的,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。
水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。
因此,工程中选择水泥强度的同时,需考虑其工程性能,有时,其工程性能比强度更重要。
集料与掺合料集料的选择应考虑其碱活性,防止碱集料反应造成的危害,集料的耐蚀性和吸水性,同时选择合理的级配,改善混凝土拌合物的和易性,提高混凝土密实度;大量研究表明了掺粉煤灰,矿渣,硅粉等混合材能有效改善混凝土的性能,改善混凝土内孔结构,填充内部空隙,提高密实度,高掺量混凝土还能抑制碱集料反应,因而掺混合材混凝土,是提高混凝土耐久性的有效措施。
即近年来发展的高性能混凝土。
混凝土的设计应考虑耐久的要求混凝土配比的设计配合比设计在满足混凝土强度,工作性的同时应考虑尽量减少水泥用量和用水量,降低水化热,减少收缩裂缝,提高密实度,采用合理的减水剂和引气剂,改善混凝土内部结构,掺入足量的混合料,提高混凝土耐久性能。
结构构件应按其使用环境设计相应的混凝土保护层厚度,预防外界介质渗入内部腐蚀钢筋。
结构的节点构造设计也应考虑构件受局部损坏后的整体耐久能力。
结构设计尚应控制混凝土的裂缝的开裂宽度。
混凝土工程施工应考虑结构耐久性混凝土的拌制尽量采用二次搅拌法,裹砂法,裹砂石法等工艺,提高混凝土拌合料的和易性,保水性,提高混凝土强度,减少用水量;大体积混凝土的浇筑振捣应控制混凝土的温度裂缝,收缩裂缝,施工裂缝,建立混凝土的浇筑振捣制度,提高混凝土密实度和抗渗性,重视混凝土振捣后的表面工序,并加强养护,以减少混凝土裂缝。
混凝土的施工过程对控制构件外观裂缝,施工裂缝至关重要,应加强施工质量管理,特殊季节施工的混凝土结构,尚应采取特殊措施。
使用阶段的检查和维护。
过去建成的大量工程已经过早老化,而且以往的设计标准较低,房屋的维修问题十分突出。
由于维修费用不到位,造成工程安全隐患,并在以后需支出更多的大修费用。
因此定期的检查和维护是非常必要的,这对混凝土结构的适用性和耐久性是非常重要的。
短期看检测和维修会增加一些费用,但从长远看,却是非常有益的。
尤其是结构的损坏有可能会导致公众安全的建筑物、桥梁和隧道等工程,有必要制定定期检测与评估的法规,确保这些工程在使用期内能正常的使用。
参考文献:
明德斯,扬, 达尔文,吴科如《混凝土》第二版本北京:化学工业出版社,2005 552页
蒋林华《混凝土材料学》南京:河海大学出版社,2006 2册(430页)
杨彦克陈改新《混凝土工程耐久性研究和应用》成都:西南交通大学出版社,2006 539页
北京市建设工程局钢筋混凝土工程施工及验收规范2007
丁晓东预应力混凝土结构耐久性的影响因素和对策[期刊论文] 2007 (35)。