电容式电压互感器绝缘介损测试方法研究四川广元电业局罗军川桂林电力电容器总厂宋守龙摘要:本文介绍了降低测试误差的一些实用经验和措施,提出了现场电容式电压互感器分压电容器绝缘介质损耗测试方法建议。
关键词:电容分压器介质损耗电磁单元测量方法1 引言随着电容式电压互感器(Capacitor V oltage Transformers,以下简称CVT)在电力系统的广泛运用,其现场试验问题越来越突出。
目前的CVT绝大多数为单柱式结构,分压器和电磁单元叠装为一个整体,现场试验时,不便将电容分压器与电磁单元分开,因此现场测试比较麻烦,容易引起测量误差,甚至不能进行正常测试。
DL/T 596-1996《电力设备预防性试验规程》修订说明中推荐采用电磁单元本身作为试验电源的自激法进行测量,但受电磁单元本身和测试方法的影响,测量结果不能反映设备绝缘的真实情况。
为有效监测CVT分压电容器的绝缘状况,CVT设备厂家在使用说明书中都提供了现场测试时的测试方法和判断标准,主要有正接法和自激法两种测量分析方法(也有单位为避免测量结果为负值,采用反接法测量CVT分压电容器整体总电容介损)。
各运行单位在测试方法上主要依据设备厂家提供的试验方法,但由于设备状况的改变和现场测试环境复杂多变等因素的影响,试验中出现的问题较多,在现场试验中对中压变压器一二次绕组端部的处理上问题尤为突出,不能正确分析处理各种异常现象,测试值忽高忽低。
由于CVT是大电容、小介损试品,对于膜纸复合绝缘结构,规程要求其tanδ不大于0.2%,如果测试方法不当产生偏大的测量误差,电容器tanδ很可能超过0.2%,出现设备误判和停电损失或者整体综合介损的测试结果为负值的情况,无法判定电容分压器的介损是否合格。
本文中笔者以现场试验为基础,通过对正接法、反接法和自激法试验测量值进行误差分析,表明现场测试值与真实值(CVT组装前分体试验测试值)之间的对应关系,更有利于客观、准确分析和评价设备的绝缘状况。
针对现有试验方法存在的诸多问题进行分析和改进,提出具有指导意义的现场CVT电容分压器绝缘介损标准测试接线方法,对现场绝缘试验实施导则的修编和完善提供了重要的参考价值。
2 CVT 工作原理及主要结构CVT是利用电容分压器将一次电压降低为几千至两万伏的中间电压,中间电压经中压变压器变换为所需的二次电压并实现一二次回路间的电气隔离。
通过调整补偿电抗器的电感值使CVT回路的感抗与容抗1/ω(C +C)接近相等,从而大大减小了CVT的内阻抗,提高了CVT的带负载能力。
整套CVT由电容分压器和电磁装置两部分叠装而成。
电容分压器的中压端和低压端由最下部的一节电容器底板上的小套管引出,并分别与电磁单元内的中压变压器的高压端、出线板上的载波通讯端子N相连接。
电磁装置和下节分压电容器在产品出厂时已连接为一体,电磁装置中的绝缘油系统与分压电容器的绝缘油系统完全隔离。
二次出线端子及载波端子通过油箱侧壁的二次出线盒引出。
其电气原理图如图1所示。
图1 CVT电气原理图注:C—载波耦合电容C1—主电容C2—分压电容D—阻尼器P—保护装置N —载波通讯端子A′—中压电压端子T—中压变压器1a、1n—二次1#绕组接线端子2a、2n—二次2号绕组接线端子da、dn—剩余电压绕组接线端子U1N—额定一次电压L—补偿电抗器X—补偿电抗器低压端子J—带有避雷有关规程规定,CVT在交接及预防性试验中应测量电容分压器的介质损耗和电容值,现场采用的测量方法主要有自激法、正接法和反接法,而选择不同的测量方法将产生程度不同的测量误差。
下面就其各自的接线特点和影响因素进行试验分析。
3 正接法测量整体总电容介质损耗3.1 试验接线现场研究试验采用全自动数字电桥AI-6000进行,其试验接线原理图如图2所示。
此时箱壳接地、X端子和中压变压器二次绕组悬空,加压线接电容分压器上端,C X线接N端子。
C B为中压变压器一次绕组对铁心、外壳和二次绕组的等值电容,R B为其等值介质损耗电阻。
一次绕组一端施加电压仍有部分绕组参与等值电路,与C B相串联的电感L B,但实测表明,当X端子悬空时,中压变压器的高压端对地总阻抗呈容性,电流I3超前U2。
由图2c可知,测量结果偏小,在很多情况下介质损耗测量值为负值。
如果现场用倒相法进行测量时,由于I3的分流作用,往往出现两个负值。
这样的测量结果是无法进行计算和绝缘分析的,试验结果如表1所示。
表 1 分体直接法与正接法、反接法的测量数据对比说明:测量试品为TYD110/3-0.02H,试验仪器采用数字电桥AI6000.分体测量时,电容器下法兰接地;整体测量时,X端子悬空,油箱接地。
(a)试验接线图(b)等值原理图(c)相量图图 2 正接法测量整体总电容介损接线原理图3.2 试验电压的选择由于X 端子、N 端子的工频耐受电压值分别为3kV 和4kV ,因此测试时若X 端子或N 端子悬空,则X 端子或N 端子的对地电压应不超过相应的耐压值。
采用正接法测量整体总电容介损时,CVT 上部接加压线,N 端子接电桥测试线。
由于测试时X 端子必须悬空,因此测试时X 端子对地的电压应不超过其出厂3kV 的绝缘耐受水平。
对于35kV 电压等级的CVT ,中压为10kV ,电容分压器的分压比接近2,因此测试电压应不超过6kV ;对于110kV 及以上电压等级的 CVT ,电容分压器的分压比均大于3.3,因此施加10kV 测试电压是完全可以的。
3.3 负值分析正接法测量CVT 整体介损容易产生负值现象 ,主要是由于CVT 电磁单元的影响,原因分析如下 。
电磁单元中的中压变压器一次回路与地之间的等效阻抗Z B 连接在电压分压器的中压端,其等效电路如图3所示。
阻抗Z B 中电阻R B 是造成整体介损偏负的主要原因,R B 值越小,R B 介损越偏负。
电阻的影响量可用下式近似计算 :)(1tan 21C C R B +=∆ωδ 电阻R B 为中压变压器一次回路与地之间的有功损耗。
它由一次回路各部件对地泄漏电阻、X 端子对地泄漏电阻、中压变压器铁心损耗的等效电阻、补偿电抗器铁心损耗的等效电阻并联而成。
当一次回路对地之间的绝缘正常时,中压变压器铁心损耗的等效电阻对R B 的影响最大。
图3 电磁单元的等值电路由于中压变压器一次绕组的激磁电抗很大,流经对地分布电容及对地泄露电阻的电流会在一次绕组两端产生一定的压降,从而在铁心中产生损耗,电阻R B 值减小,δtan ∆相应增大,测试结果偏小,如果δtan ∆大于实际值,必然出现负损耗的测量结果。
3.4 改进正接法试验接线由以上分析可知,由于电磁单元的影响,现场采用正接测量CVT 整体综合介损时将产生偏小的测量误差,甚至出现负损耗的测量结果,因此CVT 电容分压器整体介损测量时应设法尽量减小电磁单元的影响。
现场比较常用的方法是将中压变压器二次绕组端接接地(X端子仍然悬空)后测试。
测量接线图及相量图如图4所示,等值电路图如图2b 所示。
因为短路二次绕组时,中压变压器激磁电抗与二次绕组的漏电抗并联,中压变压器一次回路的阻抗变得很小,流经对地分布电容及对地泄漏电阻的电流在一次绕组两端产生的压降也就很小,在铁心中产生损耗大大减小,电阻R B 值增大,δtan ∆减少,整体综合介损δtan ∆的测量误差相应减小,测试结果为正值。
在二次绕组短路后悬空与短路后接地两种接线方式下,其测量结果差别不大,如表1所示。
(a )接线图(b )相量图图 4 正接法短接二次绕组测量整体总电容介损接线原理图3.5 误差分析及有效性评析从表1测量数据可以看出,正接法测量分压电容器总电容介质损耗产生偏小的测量误差,压器二次绕组悬空时测量结果为负值,而短路悬空时的测量结果更接近真实值(工厂分体法测量值 )。
尽管采用短路二次绕组的改进接线方式进行测量可大大减小电磁单元对整体介损的影响,但由于测量时一次回路各部件对地泄漏电阻、X 端子对地泄漏电阻或大或小始终存在,补偿电抗器铁心损耗的等效电阻也不能有效消除,所以,短路二次绕组后测出 的整体介损仍比分体时测出的整体介损要小一些,如表1所示 。
至于偏小多少,取决于一次回路各部件、X 端子对地的绝缘状态及试品电容的大小。
有时在现场测试中,如果加上其它不确定影响因素,会放大测量结果偏小的程度,可能直接导致将有缺陷的设备判定为合格 。
由于CVT 下节电容器C 1和C 2相串联,如果高压电桥排除电磁单元的影响,正接法测量的电容器整体总介损应是C 1和C 2串联的介损值。
根据绝缘串并联的等值电路定性分析可知, 电容分压器整体总电容介损tan δ总是小于其中最大者,而大于其中最小者,因此宜分开测量,才能实现绝缘缺陷的定位查找。
假设主电容C 1、分压电容C 2的介质损耗分别为tan δ1、tan δ2,对于110kV 的CVT ,一 般有C C 42=,则此时测得的整体总介质损耗为:21212112tan 5/1tan 5/4)/()tan tan (tan δδδδδ+=++=C C C C由上式可知,此时较灵敏地反映了 C 1的绝缘状况,而对于运行中易于损坏的C 2,则反映不够灵敏。
当tanδ1≈0 时,必须满足tanδ2≥1% ,才能使C1和C2串联的总介质损耗tanδ≥0.2% (规程中规定的合格标准),即才有可能超过规程允许的标准。
由此可见,正接法测量整体综合介质损耗对发现分压电容C2绝缘缺陷,灵敏度很低,难以发现分压电容器早期绝缘缺陷,更无法判断绝艳缺陷的具体部位。
4 反接法测量整体总电容介质损耗4.1 试验接线为了避免现场正接法测量整体总电容介质损耗产生负值现象,有些单位选用反接法测量,此时N端子接地、X 端子仍悬空,中压变压器二次绕组端子短路并接地。
接线原理图如图5所示。
此时流过电桥的电流为I1=I2+I3,由于I3反映的是线圈电感、激磁损耗以及中压变压器一次对二次及其他的tanδ,所以I3的方向较I2超前于电压的角度要小,从相量图可知,此时出现了偏大的测量误差,如果没有I3的影响,则测量的为C1和C2的介质损耗。
现场测量数据如表1所示。
4.2 试验电压选择反接法测量整体总电容介损试验电压的选择与正接法情况相同,详见3.2条内容。
(a)试验接线图(b )等值电路图(c )相量图 图 5 反接法测量整体总电容介损接线原理图 4.3误差分析及有效性评析由于电磁单元的影响,反接法产生偏大的测量误差,其误差值可按下式近似计算分析:B n n δδtan )1(5/1tan ⋅+⋅=∆B B δδδtan 500/1tan 1005/1tan ⋅=⋅=∆式中2/C C n B =;对于110kV 的CVT ,取pF C B 500=,pF C 500002=,则100/1=n 。