当前位置:文档之家› 油液分析资料

油液分析资料

油液监测技术1 、油液的分类全损耗系统用油风动工具油脱膜油热传导油齿轮油暂时保护防腐压缩机油汽轮机油内燃机油热处理油2 、润滑油的作用1、减磨2、密封3、冷却4、清洗5、防腐据介绍,机械设备的失效70%以上是由磨损引起的,相互接触而又有相对运动的机件均存在磨损,为了减少磨损,常采取向摩擦副之间加入某种物质以改变原来的摩擦状态,以延长零部件的使用寿命,这种措施叫润滑,能起到润滑作用的物质被称为润滑剂,所以,机器或设备的润滑剂中包含有丰富的摩擦副工作信息特别是磨损信息。

●那么,如何获取这些丰富的信息呢?油液监测技术3、油液监测技术:以机械润滑油样作为分析对象,借助现代分析仪器,通过分析被监测设备的油液的性质变化和携带的磨损微粒的情况,获得设备润滑和磨损状态的信息,评价设备的技术状态和预测故障部位,并确定故障原因、类型的技术。

可以把设备诊断中的油液分析比如人体化验血来诊断疾病。

油液监测是一门新型的综合性工程技术,是大型机械设备状态监测和故障诊断的有效手段,在各行业中发挥重要作用。

油液监测技术4 、油液监测作用:通过对油品的理化指标、污染度检测、光谱及铁谱数据的综合监测分析:能有效可靠的分析评定新油及设备在用油的质量;发现在用油的劣化程度及污染原因,为设备提供合理润滑方式和换油周期,节约用油成本;也能预测设备的磨损情况,诊断故障部位、原因和程度,指导设备视情维修。

效果-按国外经验推算,我国仅从改进机械设备润滑、采用节能润滑技术和节能型润滑剂,近期可节约重油200万吨,电力100亿KWH,总价值折合60亿-100亿元人民币。

同时由于搞好机械设备的润滑与监测维修,减少因摩擦、磨损而更换零部件所造成的停机误产所产生的效益约为300亿-500亿元人民币。

5 、组成:油液监测技术至今已陆续组成以光谱技术、铁谱技术、颗粒计数技术、红外光谱技术、理化分析技术为基本硬件构架,和以数据库、诊断库、知识库为基本软件平台的油液监测系统。

红外光谱技术只反映分子结构的信息,对原子、溶解态离子和金属颗粒都不敏感,换言之在通过油液分析对设备状态进行监测时,红外光谱仪不能代替原子发射(吸收)光谱仪、铁谱仪、颗粒计数和理化性能分析。

因此在以设备状态监测为目的的现代油液分析技术中,此五种技术--红外光谱分析技术、原子发射(吸收)光谱技术、铁谱技术以及颗粒计数技术和理化分析技术既各自独立存在又相互补充,成为用于油液监测的工业摩擦学实验室的基本配置。

6 、油液的监测技术方法油液的监测技术方法很多,主要的有以下六种:1、理化分析技术4、污染度测试(颗粒计数)2、磁塞检测法5、光谱技术3、红外光谱技术6、铁谱技术主要油液监测技术的比较一、油液的理化分析物理性能指标-主要的有粘度、水分、闪点、机械杂质、斑点测试、抗氧化性、抗乳化性、抗磨性等。

化学性能指标-主要的有总酸值、总碱值、防腐性、防锈性、氧化安定性、添加剂元素分析。

油液的理化分析项目◆粘度是润滑油的最主要性能指标,它表示滑油的承载能力和流动性,粘度是各种机械设备选油(换油)的主要依据。

设备润滑主要靠润滑油膜起减磨作用。

粘度太小:难以形成足够厚度的润滑油膜,不能起到有效的抗磨作用;粘度太大:将增大机械的运动阻力,冷却和冲洗作用变差。

综合考虑:在保证良好润滑的前提下,尽可能选择低粘度的润滑油。

粘度检测作用:作为机械设备选油(换油)的主要依据,也是检测机械设备故障的一种手段。

例如:广东湛江港务局某船舶柴油机原来使用的是CC40级柴油机油,由国内某著名润滑油公司生产。

但在使用过程中发现油的粘度增加较快,还未到换油周期就增加到粘度的上限报警值。

对此有关技术人员认为是该油级别较低所造成的,改用CD40级柴油机油,但在使用一段时间后仍发现粘度还是增长较快,故怀疑该机油质量有问题,并且希望找出机油粘度增加过快的原因。

粘度上升的原因很多,首先确定有关检测项目,从检测数据的变化来分析在用油品粘度升高的原因,下表是对该机所用新油和旧油的有关检测结果。

原因分析从上述检测结果来看,新油的检测结果符合CD40柴油机油的质量标准,旧油的总碱值和添加剂元素含量下降不大,基本上在正常范围,说明机油的有关添加剂性能还稳定。

另外旧油的水分含量也在正常允许范围,但旧油的粘度和不溶物都较高,超出了换油标准。

排除新油的质量问题,从柴油机的运行状况来分析,导致机油粘度上升的原因主要有柴油机持续高温运行、柴油机漏气严重、油品使用时间过长,以及油中进水等多方原因。

现场了解柴油机冷却系统很好,且很少持续高温运行,油中也未进过量水分,使用时间也未达到检修期。

从检测数据来看,旧机油不溶物含量较高,用铁谱分析方法观察到油中有较多的油泥。

这表明旧油的不溶物主要是由高温氧化形成的油泥所组成。

油泥增加,势必使油品的粘度上升,由上述分析基本推断润滑油粘度上升的原因可能是因燃气泄漏,使柴油机曲轴箱中润滑油局部高温氧化,造成了油泥的增加。

港务局船舶公司在接到检测分析报告后,对柴油机进行解体检查。

发现该机的缸套、活塞环尺寸普遍都超出了规定范围。

原因是该机在上次大修时,因进口备件较贵,采用了国产活塞环,在装配及活塞环尺寸上有些问题,从而导致了缸套和活塞环的配合间隙过大,大量燃气进入曲轴箱,使油品严重氧化。

后更换为原柴油机厂进口的活塞环,并全部使用新油,柴油机运行一段时间后,在用润滑油的粘度仍保持正常。

油液监测技术◆润滑油中的水份指润滑油中含水量的重量百分比,润滑油中含有水分时可加速滑油的变质并使机器的磨损加剧。

当滑油中水分含量小于0.03%,则认为是痕迹(合格),润滑油中的水份越少越好。

水份的影响1 、水分会促使油品乳化,降低油液粘度和油膜强度,使润滑效果变差;2 、加速油液的氧化,特别是在有铁、铜、锰等金属微粒存在的情况下,水与空气中的氧使油液迅速氧化(氧化速度几十倍),生成粘稠状的复合物,俗称油泥;3 、水能分解油液中的某些添加剂,形成能腐蚀金属表面的酸,使酸值增加,加速对金属的腐蚀;4 、低温时,水分使润滑油流动性变差,高温时,水分发生汽化,不仅破坏油膜,而且产生气阻。

在1800F的温度下,当一加仑的油里含有一滴水时,就会破坏锌抗磨添加剂必须将乳化水的含量控制在100ppm下。

二、磁塞检测法磁塞检测法是最早出现的一种检查机器磨损状态的简便方法。

它是在机器的润滑油路系统中插入磁性探头(磁塞)用已搜集悬浮在润滑油中的铁磁性磨粒,并定期观察所搜集到的磨粒大小、数量和形态以判断机器的磨损状态的一种检测方法。

缺点:只能用于铁磁性磨粒的检测;当出现大于50以上的大磨粒时,才能显示其较高的检测效率。

观察方法:肉眼;放大镜(10-40);铁谱显微镜。

三、红外光谱利用红外傅立叶变换进行分子光谱分析以判断油液的性能,通过油液中的硝化物、硫化物、抗氧剂损失、水分、燃油等的含量以判断油液的劣化程度。

原理-当用一束具有连续波长的红外光照射一物质时,该物质的分子就要吸收一部分光能,并将其转变为分子的振动和转动内能,若将透过物质的光进行色散,就可以得到一条谱带(光谱图),不同的分子具有不同的振动和转动内能(不同光谱图),根据待监测油样的红外光谱中吸收峰的强度、位置和形状,就可以判断相应物质的存在和含量。

应用无论应用何种方法检测润滑油中燃料含量都是非常困难的。

燃料和润滑油的主要差别在于它们的分子量(或沸程)和芳香性组分含量的不同,燃料具有降低的沸程和较高的芳香性组分含量。

红外光谱技术正是通过芳香性组分的红外吸收来判断润滑油中的燃料水平。

对于汽油稀释,红外吸收位于750cm-1附近;对于柴油稀释,红外吸收位于800cm-1附近;一般地燃料稀释的读数大约为50A.cm-1严重的燃料污染的读数超过70A. cm-1时。

四、污染度测试进行污染度测试的仪器是颗粒计数器、润滑油污染测试仪,颗粒计数是对油液内的颗粒进行粒度测量,并按预选的粒度范围进行计数,从而得到有关磨粒粒度分布方面的信息以判断机器磨损的状况。

也就是评定油液内固体颗粒(包括机械磨损颗粒)污染程度的一项重要技术,可与铁谱技术联合应用于液压油的监测。

油液的污染种类:主要包括:颗粒、水分、空气、热和微生物污染等。

其中对油液使用性能影响最大的就是颗粒和水分污染,其次为空气、热污染。

通常意义上所说的污染就是指颗粒与水分污染。

国际标准化组织统计:液压系统故障的75-80%是油液颗粒污染所致;英国液压机械研究联合会(BHRA)及国家工程试验(NEL)对117台液压设备进行了为期三年的研究结果表明,55%的故障直接归因于系统油液中颗粒污染物的存在。

例子-上海铁路局工务段通过多年对各种机械设备液压油的监测,总结出液压油经过一年的使用后理化指标大多合格,只是污染度超标的规律。

在开展油液监测之前,在用的20台机械均采用每年度一律换油的液压油管理方式,浪费很大。

通过油液监测,再利用精细滤油机过滤后,在受监控的25台机械中,一年仅有4台更换液压油,还不到总量的1/5,以平均每台机械的液压油量为150L计算,可减少油料供应逾3000L,节约支出五十万元以上,由此产生的经济效益十分可观。

润滑油污染测试仪器通过检测可以达到以下几个目的:掌握机器主要摩擦副的磨损状态。

掌握机器主要摩擦副的磨损趋势,预测和诊断机器因磨损而引发的故障。

掌握润滑油品质衰败状况,确定合理地换油周期。

结合检测数据,综合掌握机器技术状态,指导使用、管理和阶段性的集中检修。

为确定各型号的润滑油检测标准积累数据资料。

五、油液光谱分析特点:可在30秒钟内精确分析出油液中近20种(最多可达32种)元素的(PPM级)含量,可分析润滑油和液压油中的各种磨损金属元素Fe、Cu、Al、Pb,添加剂元素S、P、Ca、Ba 和外界污染元素Si的浓度。

1 、通过测量磨损元素的成分和含量,根据设备运动摩擦副零件的材料构成,可以判断磨粒产生的可能部位。

(例如)2 、通过测量添加剂元素及污染物的成分及含量,根据润滑油的性能要求,可以判断润滑油的劣化变质程度;3 、通过测量磨损元素的变化率,可以判断摩擦副的磨损趋势及其严重程度,对机械设备的运行状态进行监测;4 、通过观察元素含量的变化趋势,可分析燃油中的金属元素,确证燃油是否满足燃气轮机制造商制定的燃油规范,监控燃油处理的效果。

优点:1、速度快30秒;2、精度高PPM微量级;3、取样少,可同时进行多元素测定,适用范围广;4、自动化程度高,有多种连锁保护。

测量结果人为因素少。

缺点:1、检测的磨粒尺寸比较小,2微米效率最高,最大尺寸不超过10微米;2、不能提供磨粒的形态、尺寸、颜色等直观形象的信息,因此光靠光谱分析的结果直接对摩擦副的状态作出判断有很大的困难;3、价格较贵。

六、铁谱分析铁谱分析技术是利用高梯度的磁场,将油内磨屑颗粒与油液及杂质分离,并使其按一定规律,沉积在置于磁场上方的玻璃片上,形成谱片,再利用铁谱显微镜对谱片上的磨屑进行大小、形状、色泽、表面纹理等的观察、磨损类型的识别的技术。

相关主题