工业设计机械设计基础大作业一、序言平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。
虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。
对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。
二、平面连杆机构优缺点的介绍连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。
例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。
这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。
它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。
连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。
此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。
正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。
三、平面四杆机构的基本类型与应用实例。
连杆机构是由若干刚性构件用低副连接所组成的。
在连杆机构中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。
平面四杆机构是平面连杆机构的最基本形式,这其中所有运动副均为转动副的四杆机构称为铰链四杆机构。
在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为三种基本形式。
即曲柄摇杆机构、双曲柄机构和双摇杆机构。
其中:1.曲柄摇杆机构在铰链四杆机构中,若两连架杆中有一个为曲柄(整周回转),另一个为摇杆(一定范围内摆动),则称为曲柄摇杆机构。
在这种机构中,当曲柄为原动件时,可将原动件的连续转动,转变为摇杆的反复摆动。
如飞剪、间歇传送机构、传送带送料机构等。
而当摇杆为原动件时,可以将原动机的反复摆动,转化为从动曲柄的整周转动。
如缝纫机的踏板机构。
实例1:飞剪图示为飞剪机构,构件1为曲柄,它转动后通过连杆2使摇杆3(即下刀口)绕D点摆动,通过与连杆2(即上刀口)配合运动,在曲柄回转一周中会存在某个时刻连杆2(即上刀口)与摇杆(即下刀口)汇合在一起,即形成剪切动作。
实例2:间歇传送机构图示为间歇传送机构,构件1为曲柄,它转动后通过连杆2使摇杆3绕D点摆动,在连杆2上固定安装有推动物料的构件,在曲柄1运动过程中,连杆带动该构件做出推动动作,且曲柄每回转一周完成一次推动动作,如此往复,便可实现间歇传动。
实例3:缝纫机的踏板机构图示为缝纫机的踏板机构,构件1为摇杆,它转动后通过连杆2使曲柄3绕D点转动,使用摇杆为主动件的曲柄摇杆机构存在止点,当机构因为止点而无法运转时,需要借助外力将机构推离止点。
2.双曲柄机构在铰链四杆机构中,若两连架杆均为曲柄(整周回转),则称为双曲柄机构。
这种机构的传动特点是当主动曲柄连续等速转动时,从动曲柄一般作不等速运动,只有当两对边构件长度均相等且平行时,主动曲柄与从动曲柄才能实现相同角速度转动。
双曲柄机构的应用例子有惯性筛机构、公共汽车车门开闭机构、火车车轮机构等。
实例1:惯性筛机构图示为惯性筛机构,构件1为主动曲柄,它转动后通过连杆2使从动曲柄3绕D点转动,该机构中曲柄长度不平行,当主动曲柄1匀速转动时,从动曲柄3做变速转动,从而使得上方的筛子具有一定的加速度,达到筛分物料的目的。
实例2:公共汽车车门开闭机构图示为公共汽车车门开闭机构,构件1为主动曲柄(一侧车门),它转动后通过连杆2使从动曲柄3绕D点转动。
该机构中两曲柄长度相同但不平行,因此其运动的主从动曲柄转向相反。
当曲柄1转动时,曲柄2即向相反方向转动,因而可以使得两侧车门同时打开,且速度相等。
3.双摇杆机构在铰链四杆机构中,若两连架杆均为摇杆(一定范围内摆动),则称为双摇杆机构。
在这种机构中两连架杆均为摆动,可以实现一定范围内的移动。
其应用实例有飞机起落架、鹤式起重机、汽车前轮转向机构等。
实例1:汽车前轮转向机构图示为汽车前轮转向机构,构件1为主动摇杆,它转动后通过连杆2使从动摇杆3绕D点摆动,该机构使用一个动力元件便可使得两前轮同向转动,且转动角度相同以实现转向动作。
实例2:鹤式起重机图示为鹤式起重机机构。
AB为主动摇杆,CD为被动摇杆,重物悬挂在连杆CE上,当主动摇杆AB摆动时,从动摇杆CD也随之摆动,位于连杆BC延长线上的重物悬挂点E将沿近似水平直线运动。
实例3:飞机起落架图示为飞机起落架机构,构件1为主动摇杆,一般由液压缸带动,它转动后通过连杆2使从动摇杆3绕D点转动,同时带动轮子收起(放出)。
当轮子处于伸出状态时,整个机构处于止点状态,有助于保证飞机降落时的安全。
三、平面四杆机构的演变方法、演变过程,演变后机构的应用实例1 、将转动副转化为移动副法演变过程如下图a所示,将铰链四杆中的摇杆3做成滑块的形式,使其沿圆弧导轨往返滑动时,该机构演变为图b所示的具有曲线导轨的曲柄滑块机构。
再将摇杆的长度演变成∞,机构就演变成图c所示的具有偏距e的曲柄滑块机构,当e=0时,则为图d所示对心曲柄滑块机构。
c图a图b图d图该转化方法的应用实例有:实例1:小型冲床图示为小型冲床结构,构件3为曲柄,一般在冲床的曲柄上配有一个质量比较大的飞轮,转动起来之后借助飞轮的转动惯量,便可实现较大的冲压力。
其具体的动作过程为,曲柄3转动带动连杆4运动,同时使滑块5顺着导轨槽上下往复运动。
实例2:内燃机图示为内燃机一个工作缸的结构简图,构件3为滑块(活塞),活塞在柴油或汽油的燃烧作用被推动,活塞3的上下往复运动通过连杆2推动曲柄1做回转运动,从而为汽车提供了动力源。
2、选用不同的构件为机架对心曲柄滑块机构是具有一个移动副的四杆机构,在a图所示的曲柄滑块机构中,若取构件1为机架则转化为如b所示的转动导杆机构;若取构件2为机架则转化为图c所示的曲柄摇块机构;若取构件3为机架则转化为图e所示的定块机构。
该转化方法的应用实例有:实例1:小型刨床图示为小型刨床结构,图示的ABC部分即为转动导杆机构,构件1为曲柄,通过滑块C带动导杆3转动,运动时滑块C在导杆上滑动,导杆末端通过另一杆件与刨刀E相连接,E的运动具有急回特性。
实例2:牛头刨床图示为牛头刨床结构,图示的ABC部分即为摆动导杆机构,构件2为曲柄,通过滑块C带动导杆3摆动,运动时滑块C在导杆上滑动,滑块固定在一滑槽内,通过滑块带动刨刀运动。
实例3:自卸卡车车厢举升机构图示为自卸卡车车厢举升机构,图示的ABC部分即为曲柄摇块机构,其中摇块3为油缸,用压力油推动活塞使车厢翻转。
实例4:手摇唧筒图示为手摇唧筒,图示的ABC部分即为定块机构,构件1为摇杆,定块3通过连杆2与摇杆连接,摇杆带动限制在滑槽中的活塞4运动,完成取水动作。
3、扩大转动副的尺寸在图a所示的曲柄摇杆机构中,如果将曲柄1端部的转动副曰的半径加大至超过曲柄1的长度AB,使得到如图b所示的机构。
此时,曲柄l变成了一个几何中心为B、回转中心为A的偏心圆盘,其偏心距e即为原曲柄长。
该机构与原曲柄摇杆机构的运动特性相同,其机构运动简图也完全一样。
在设计机构时,当曲柄长度很短、曲柄销需承受较大冲击载荷而工作行程较小时,常采用这种偏心盘结构形式,在冲床、剪床、压印机床、柱塞油泵等设备中,均可见到这种结构。
其应用实例有:实例1:小型冲床图示为小型冲床结构,构件3为曲柄,一般在冲床的曲柄上配有一个质量比较大的飞轮,转动起来之后借助飞轮的转动惯量,便可实现较大的冲压力。
其具体的动作过程为,曲柄3转动带动连杆4运动,同时使滑块5顺着导轨槽上下往复运动。
(四)、连杆机构的创新(选作)与传统的连杆机构相比,近年来的设计已经充分使用了仿真分析,比如利用矢量方法来描述平面连杆机构的运动及动力分析,使用ANSYS等软件对连杆机构机构模型进行运动仿真等。
利用这些手段,现代利用数学分析的方法对连杆系统进行求解的比重大大增加,不仅降低了设计的难度,也使得系统的实用性也能够最大程度的满足设计的需求。
通过查阅资料,目前常见的连杆创新设计有变比例剪叉式连杆机构、多套四杆机构串联机构、六杆机构等。
实例1:变异剪叉式连杆机构图示为曲线轨迹变异剪叉式结构,通过改变销轴的位置,使其偏离于两杆的中心位置,在剪叉机构展开时,其打开方向就会呈现曲线的状态。
五、参考资料1、黄华梁、彭文生主编,高教出版社出版,《机械设计基础》2. 阮宝湘主编,机械工业出版社出版《工业设计机械基础》3、孙桓主编,高等教育出版社出版,机械原理4、杨家军编/华中科技大学出版,机械原理(第二版)/5、申永胜主编,清华大学出版社出版机械原理六、提交资料要求:通过图书馆或网络收集相关资料,整理初稿,用纸抄写,补充插图(插图用铅笔画),整理后上交。