PID 电动机转速控制与显示摘要:在运动控制系统中,电机转速控制占有至关重要的作用。
本文以A T89S51单片机为控制核心,产生占空比受数字PID 算法控制的PWM 脉冲实现对直流电机转速的控制。
同时利用光电传感器将电机速度转换成脉冲频率反馈到单片机中,实现转速闭环控制,达到转速无静差调节的目的。
在系统中采128×64LCD 显示器作为显示部件,通过4×4键盘设置P 、I 、D 、V 四个参数和正反转控制,启动后可以通过显示部件了解电机当前的转速和运行时间。
该系统控制精度高,具有很强的抗干扰能力。
关键词:数字PID ;PWM 脉冲;占空比;无静差调节1.PID 控制技术简介1.1 PID 算法控制算法是微机化控制系统的一个重要组成部分,整个系统的控制功能主要由控制算法来实现。
目前提出的控制算法有很多。
根据偏差的比例(P )、积分(I )、微分(D )进行的控制,称为PID 控制。
实际经验和理论分析都表明,PID 控制能够满足相当多工业对象的控制要求,至今仍是一种应用最为广泛的控制算法之一。
下面分别介绍模拟PID 、数字PID 及其参数整定方法。
1.1.1 模拟PID在模拟控制系统中,调节器最常用的控制规律是PID 控制,常规PID 控制系统原理框图如图1.1所示,系统由模拟PID 调节器、执行机构及控制对象组成。
图1.1 模拟PID 控制系统原理框图PID 调节器是一种线性调节器,它根据给定值)(t r 与实际输出值)(t c 构成的控制偏差: )(t e =)(t r -)(t c (1.1)将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID 调节器。
在实际应用中,常根据对象的特征和控制要求,将P 、I 、D 基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。
例如,P 调节器,PI 调节器,PID 调节器等。
模拟PID 调节器的控制规律为])()(1)([)(0dtt de T dt t e T t e K t u D t I p ++=⎰ (1.2)式中,P K 为比例系数,I T 为积分时间常数,D T 为微分时间常数。
简单的说,PID 调节器各校正环节的作用是:(1)比例环节:即时成比例地反应控制系统的偏差信号)(t e ,偏差一旦产生,调节器立即产生控制作用以减少偏差;(2)积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强;(3)微分环节:能反映偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。
由式1.2可得,模拟PID 调节器的传递函数为)11()()()(S T ST K S E S U S D D I P ++== (1.3) 由于本设计主要采用数字PID 算法,所以对于模拟PID 只做此简要介绍。
1.1.2 数字PID在DDC 系统中,用计算机取代了模拟器件,控制规律的实现是由计算机软件来完成的。
因此,系统中数字控制的设计,实际上是计算机算法的设计。
由于计算机只能识别数字量,不能对连续的控制算式直接进行运算,故在计算机控制系统中,首先必须对控制规律进行离散化的算法设计。
为将模拟PID 控制规律按式(1.2)离散化,我们把图1.1中)(t r 、)(t e 、)(t u 、)(t c 在第n 次采样的数据分别用)(n r 、)(n e 、)(n u 、)(n c 表示,于是式(1.1)变为 :)(n e =)(n r -)(n c (1.4)当采样周期T 很小时dt 可以用T 近似代替,)(t de 可用)1()(--n e n e 近似代替,“积分”用“求和”近似代替,即可作如下近似T n e n e dt t de )1()()(--≈ (1.5) ⎰∑=≈t n i T i e dt t e 01)()( (1.6) 这样,式(1.2)便可离散化以下差分方程01})]1()([)()({)(u n e n e T T n e T T n e K n u n i D IP +--++=∑= (1.7) 上式中0u 是偏差为零时的初值,上式中的第一项起比例控制作用,称为比例(P )项)(n u P ,即 )()(n e K n u P p = (1.8)第二项起积分控制作用,称为积分(I )项)(n u I 即∑==n i IP I i e T T K n u 1)()( (1.9) 第三项起微分控制作用,称为微分(D )项)(n u D 即 )]1()([)(--=n e n e TT K n u D P D (1.10) 这三种作用可单独使用(微分作用一般不单独使用)或合并使用,常用的组合有:P 控制: 0)()(u n u n u P += (1.11)PI 控制: 0)()()(u n u n u n u I P ++= (1.12)PD 控制: 0)()()(u n u n u n u D P ++= (1.13)PID 控制: 0)()()()(u n u n u n u n u D I P +++= (1.14)式(1.7)的输出量)(n u 为全量输出,它对于被控对象的执行机构每次采样时刻应达到的位置。
因此,式(1.7)又称为位置型PID 算式。
由(1.7)可看出,位置型控制算式不够方便,这是因为要累加偏差)(i e ,不仅要占用较多的存储单元,而且不便于编写程序,为此对式(1.7)进行改进。
根据式(1.7)不难看出u (n -1)的表达式,即011})]2()1([)()1({)1(u n e n e TT n e T T n e K n u n i D I P +---++-=-∑-= (1.15) 将式(1.7)和式(1.15)相减,即得数字PID 增量型控制算式为)1()()(--=∆n u n u n u)]2()1(2)([)()]1()([-+--++--=n e n e n e K n e K n e n e K D I P (1.16)从上式可得数字PID 位置型控制算式为)(n u 0)]2()1(2)([)()]1()([u n e n e n e K n e K n e n e K D I P +-+--++--= (1.17) 式中: P K 称为比例增益;IPI T T K K =称为积分系数; T T K K D P D =称为微分系数[1]。
数字PID 位置型示意图和数字PID 增量型示意图分别如图1.2和1.3所示:图1.2 数字PID 位置型控制示意图图1.3 数字PID 增量型控制示意图1.1.3 数字PID 参数整定方法如何选择控制算法的参数,要根据具体过程的要求来考虑。
一般来说,要求被控过程是稳定的,能迅速和准确地跟踪给定值的变化,超调量小,在不同干扰下系统输出应能保持在给定值,操作变量不宜过大,在系统和环境参数发生变化时控制应保持稳定。
显然,要同时满足上述各项要求是很困难的,必须根据具体过程的要求,满足主要方面,并兼顾其它方面。
PID 调节器的参数整定方法有很多,但可归结为理论计算法和工程整定法两种。
用理论计算法设计调节器的前提是能获得被控对象准确的数学模型,这在工业过程中一般较难做到。
因此,实际用得较多的还是工程整定法。
这种方法最大优点就是整定参数时不依赖对象的数学模型,简单易行。
当然,这是一种近似的方法,有时可能略嫌粗糙,但相当适用,可解决一般实际问题。
下面介绍两种常用的简易工程整定法。
(1)扩充临界比例度法这种方法适用于有自平衡特性的被控对象。
使用这种方法整定数字调节器参数的步骤是:①选择一个足够小的采样周期,具体地说就是选择采样周期为被控对象纯滞后时间的十分之一以下。
②用选定的采样周期使系统工作:工作时,去掉积分作用和微分作用,使调节器成为纯比例调节器,逐渐减小比例度δ(P K /1=δ)直至系统对阶跃输入的响应达到临界振荡状态,记下此时的临界比例度K δ及系统的临界振荡周期k T 。
③选择控制度:所谓控制度就是以模拟调节器为基准,将DDC 的控制效果与模拟调节器的控制效果相比较。
控制效果的评价函数通常用误差平方面积⎰∞02)(t e 表示。
控制度=模拟])([])([0202⎰⎰∞∞dt t e dt t e DDC(1.18)实际应用中并不需要计算出两个误差平方面积,控制度仅表示控制效果的物理概念。
通常,当控制度为1.05时,就可以认为DDC 与模拟控制效果相当;当控制度为2.0时,DDC 比模拟控制效果差。
④根据选定的控制度,查表1.1求得T 、P K 、I T 、D T 的值[1]。
表1.1 扩充临界比例度法整定参数(2)经验法经验法是靠工作人员的经验及对工艺的熟悉程度,参考测量值跟踪与设定值曲线,来调整P 、I 、D 三者参数的大小的,具体操作可按以下口诀进行:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长。
下面以PID 调节器为例,具体说明经验法的整定步骤:①让调节器参数积分系数I K =0,实际微分系数D K =0,控制系统投入闭环运行,由小到大改变比例系数P K ,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。
②取比例系数P K 为当前的值乘以0.83,由小到大增加积分系数I K ,同样让扰动信号作阶跃变化,直至求得满意的控制过程。
③积分系数I K 保持不变,改变比例系数P K ,观察控制过程有无改善,如有改善则继续调整,直到满意为止。
否则,将原比例系数P K 增大一些,再调整积分系数I K ,力求改善控制过程。
如此反复试凑,直到找到满意的比例系数P K 和积分系数I K 为止。
④引入适当的实际微分系数D K 和实际微分时间D T ,此时可适当增大比例系数P K 和积分系数I K 。
和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。
PID 参数是根据控制对象的惯量来确定的。
大惯量如:大烘房的温度控制,一般P 可在10以上,I 在(3、10)之间,D 在1左右。
小惯量如:一个小电机闭环控制,一般P 在(1、10)之间,I 在(0、5)之间,D 在(0.1、1)之间,具体参数要在现场调试时进行修正。
1.2 PWM 脉冲控制技术PWM (Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术。