17 冷轧管材塑性成形原理17.1 周期式轧管法塑性变形原理17.1.1 轧制过程图17-1所示为二辊周期式冷轧管法进程轧制工作简图。
轧制过程可分解为以下过程:(1)送进管料:轧辊位于进程轧制的起始位置,也称起点Ⅰ,管料送进m 量值,Ⅰ移至Ⅰ1Ⅰ1,轧制锥前端由ⅡⅡ移至Ⅱ1Ⅱ1,管体内壁与芯棒间形成间隙Δ;(2)进程轧制:轧辊向前滚轧,轧件随着向前滑动,轧辊前部的间隙随之扩大。
变形区由两部分组成:瞬时减径区和瞬时减壁区,分别对应中心角θp 、θo ,分别定义为减径角和减壁角。
两者之和为咬入角θz ,整个变形区定义为瞬时变形区;(3)转动管料和芯棒:滚轧到管件末尾后,在稍大于成品外径的孔型内将管料转动60°~90°,芯棒也同时转动,但转角略小,以求磨损均匀。
轧件末端滑移至 Ⅲ Ⅲ。
轧至中间任意位置时,轧件末端移至Ⅱx Ⅱx ;(4)回程轧制:又称回轧,轧辊从轧件末端向回滚轧。
由于进程轧制时轧机有弹跳,管体沿孔型横向也有宽展,所以转动角度后回程轧制仍有相当的减壁量,约占一个轧制周期的30%~40%。
回轧时瞬时变形区与进程轧制相同,由减径和减壁区构成。
金属流动方向为原流动方向。
图17-1 二辊周期式冷轧管机进程轧制过程 图17-2 二辊式冷轧管机轧槽底部展开图 (a )送进;(b )滚轧;(c )转动管料和芯棒 1-空转送进部分;2-减径段;3-压下段;17.1.2 主要变形参数的确定 4-预精整段;5-精整段;6-空转回转部分 按进程轧制将轧辊孔型展开(图17-2),“1”-空转管料送进部分;“6”-空转回转部分;其余为变形区,可分为四段变形区: “2”-减径段:对应压缩管料外径直至内表面与芯棒接触为止。
因为冷轧管料一般较薄,减径时壁厚增加,塑性降低,横剖面压扁扩大了芯棒两侧非接触区,变形均匀性变差,容易轧折,所以减径量越小越好。
一般管料内径与芯棒最大直径间的间隙取在管料内径的3%~6%以下。
壁厚增量000j d d 0.8)S ~(0.7S ∆∆≈ (17-1)第 四 篇 管 材 生 产 式中 d 0、0d ∆、S 0—管料外径、外径减缩量和壁厚。
“3”-压下段:主要变形阶段,同时减径和减壁;“4”-预精整段:最后定壁,主要变形结束;“5”-精整段:定径,同时进一步提高表面质量和尺寸精度。
假设F 0是管料横截面积,那么每个轧制周期管料送进体积为m F 0,设F 1是轧件出口横截面积,按体积不变条件,每个轧制周期延伸总长度m m F F L 10∑μ∆==(17-2) 式中 ∑μ—总延伸系数。
因为周期式冷轧是依次送进,逐渐轧到成品管尺寸,变形区内任意横剖面总是经过若干轧制周期后才达到要求尺寸。
除上述总变形量外,对于变形区内任意剖面,定义变形瞬间的变形量为“瞬时变形量”,相对于管料的变形量为“积累变形量”。
定义变形区内任意横剖面F x 的瞬时延伸系数等于与F x 相距Δx 的前一截面F Δx 与F x 之比。
可以证明:此两截面间包含的体积等于该轧制周期的送进体积,即m m F F x x x0∑μ∆== (17-3) 设管料的外径、内径、壁厚分别以d 0、d 0/、S 0表示,相应的成品管尺寸分别以d 1、d 1/、S 1表示,以d x 、d x /、S x 表示F x 的尺寸,以d Δx 、d Δx /、S Δx 表示F Δx 的尺寸,则各变形参数可分别表示如下: ⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫='+'+==='+'+==⨯='+'+==1011100010x 0x x x x 000x 0x x x x x x x x x x x x x x x x x x S -S S )d (d S )d (d S F F S -S S )d (d S )d (d S F F 100S S -S S S S -S S )d (d S )d (d S F F ∑∑∑∑∆∆∆∆∆∆∆∆∆μ∆μ∆∆μ总减壁量总延伸系数积累减壁量积累延伸系数%=瞬时减壁率瞬时减壁量瞬时延伸系数 (17-4) 由式(17-3)可知变形区内任一断面在每一轧制周期中向前移动Δx 在变形区不同位置是逐渐增大的,所以计算任一断面在变形区内承受的加工次数比较复杂。
不同的送进量、变形程度以及孔型形状等都会使各断面在变形区内的加工次数发生变化。
如果孔型压下段的展开线为抛物线,则任意断面在变形区内承受的加工次数,即变形分散系数n 1可近似按下式计算:)2m(13l n 11∑μ+=(17-5) 式中 l 1—压下段水平长度。
从生产率来看,n 1愈小愈好,但过小会加大每个周期变形量,易在成品管上于孔型开口处出现横裂等缺陷。
为此,轧制不同材料的管材时对应不同的最小变形分散系数,常见值见表17-1。
17.2 冷轧变形区应力分析17 冷 轧 管 材 塑 性 成 形 原 理冷轧管变形区内各部分金属的应力状态比较复杂,而且还会随着轧制条件的变化而变化,它主要与外摩擦、变形的均匀性以及轧制制度等有关。
表17-1 各种合金最小变形分散系数合金变形程度/% N 1 紫铜H62(挤压后退火)H62H68HSn70-1B5T A1T A7TC21Cr18Ni9Ti 85 85~88 85~88 80~85 73~78 70~80 70~80 50~65 60~70 81 5.5~7 6.7~10 10~14 5~5.5 7.2~9.0 5~5.5 7.5~8 14~15 10~11 11~1217.2.1 外摩擦的影响图17-3是冷轧管机进程轧制时变形区出口垂直剖面轧槽内各点的速度分布。
如图所示,轧辊绕主动齿轮节圆周上一点O 1旋转,O 1是瞬时中心,变形区出口垂直剖面上各点的速度:轧辊轴心G ,v G =R j ωG ;孔型槽底C ,v c =(R j -ρc )ωG ;孔槽边缘b ,v b =(R j -ρb )ωG ;孔型内任一点x ,v x =(R j -ρx )ωG 。
R j 为主动齿轮节圆半径,ωG 为轧辊转速。
图17-3 进程轧制时变形区出口垂直剖面轧槽内各点的速度分布假设出口垂直剖面金属以v m 流动,与机架运行方向相同的速度为正,则变形区出口垂直剖面上轧槽各点对接触金属的相对速度v xd 如图17-4(a )所示。
接触辊面上任意点相对轧件的速度等于)-(--x j G m x m xd R v v v v ρω== (17-6) v xd >0为前滑区;v xd <0为后滑区;v xd =0的各点为中性点,连接中性点构成中性线,如图17-4(b )中的曲线ABC ,在ABC 以内为后滑区,出口剖面上点A 、C 所对应的轧辊半径成为轧制半径ρz ,轧制半径满足)-(R v z j G m ρω= (17-7)如果减少变形量,变形区内金属流动速度会下降,后滑区则相应扩大。
变形区内工具给轧件接触表面的摩擦力方向如图17-4(b )所示。
由于变形金属只向机架进程轧制的运动方向流动,则在前滑区金属承受三向附加压应力,在后滑区承受轴向附加拉应力,其他两向为压应力。
第四篇管材生产图17-4 进程轧制时工具接触表面的相对速度和轧件的摩擦力方向回程轧制时,金属仍沿进程轧制的方向流动,轧辊作反向旋转,变形区出口剖面内轧辊接触表面相对轧件的速度如图17-5(a)所示。
设仍以与机架运行方向相同的速度为正,由式(17-6)可得回程轧制时前、后滑区的分布情况和摩擦力方向如图17-5(b)所示,BDD/B/为后滑区。
所以回程轧制时槽底部分金属在外摩擦力作用下受三向附加压应力,槽缘部分金属受轴向拉应力,其余两向为压应力。
与进程轧制时相反。
图17-5 回程轧制时工具接触表面的相对速度和轧件的摩擦力方向由于轧件始终向机架进程轧制的运动方向延伸,芯棒接触表面的摩擦力方向总是与回轧时机架的运动方向相同,对接触表面的金属造成三向附加压应力。
17.2.2 不均匀变形的影响与一般纵轧孔型一样,周期式冷轧孔型也有一定的开口度,以防止啃伤、轧折等缺陷的发生。
轧制时在孔型开口处形成一定的非接触区,无论正轧或回轧,开口处金属皆受到附加拉应力作用,槽底部分金属受到附加轴向压应力作用。
综上所述,周期式轧管出口剖面最常可能出现的工作应力状态分布如图17-6所示。
孔型开口处始终承受拉应力,严重时甚至可能出现横裂,这是限制冷轧管一次变形率的主要原因。
17.2.3 变形分散程度的影响轧制时的附加应力轧后必然以残余应力的状态保留下来,无论从正轧或回轧造成的残余应力分析,只要回轧前旋转60°~90°,残余应力都能部分互相抵消。
如果减小每次变形量,增加加工次数,就会降低每次产生的残余应力,而且不断互相抵消,促使轧件内残余应力均匀化,利于金属塑17 冷 轧 管 材 塑 性 成 形 原 理 性的提高。
但是,变形分散程度的增加又会降低生产率,所以压下段分散系数应按不同材料规定一个允许的最低值,以控制产品质量。
图17-6 周期式冷轧管工作应力状态图(a )进程轧制;(b )回程轧制17.3 二辊周期式冷轧管作用力计算冷轧管时的作用力主要是轧制力及轴向力。
17.3.1 轧制力计算与一般纵轧轧制力计算类似,在轧制过程中,计算断面的金属对轧辊轧制力可用下述方法:F p P = (17-8)式中 p ——平均单位压力;F ——金属与轧槽接触面积。
p 可用ю.ф.舍瓦金公式计算。
进程轧制时⎥⎥⎦⎤⎢⎢⎣⎡+=x j j dx dx x 0w bx S S 21-S S f n p ρ∆ρρσ)( (17-9) 回程轧制时 ⎥⎥⎦⎤⎢⎢⎣⎡+=x dx h dx j x 0w bx S S 21-S S f 2.5~2.0n p ρ∆ρρσ)()( (17-10) 式中 bx σ—金属在计算断面变形程度下的抗拉强度;w n —考虑中间主应力的影响系数,其值为1.02~1.08,一般取为1.05;0S 、x S —管料壁厚和所取计算断面轧件壁厚;j ρ、dx ρ—主动传动齿轮节圆半径和计算断面孔槽底部轧辊半径;f ——摩擦系数,对钢、铝合金为0.08~0.1;对紫铜、黄铜及其他有色金属为0.05~0,07;j S ∆、h S ∆—进程和回程时管壁绝对压下量,进程时为70%~80%总压下量,回程时为20%~30%总压下量。
F 可以近似用压下段接触面积的水平投影表示:x dx x S 2B F ∆ρ= (17-11)式中 B x ——计算断面孔槽宽度;x S ∆——计算断面管料厚度绝对压下量。
第 四 篇 管 材 生 产 当轧制强度高的钢、钛及黄铜等合金时,弹性压扁对接触面积影响较大,接触面积水平投影可按下式计算:)(=6D -0.393D 103.9S 2D F x 0x bx 4-x dx x ρσ∆ρη⨯+ (17-12) 式中 η —形状系数,二辊轧机为1.26,三辊轧机为1.10;x D —计算断面轧槽直径;0ρ—孔型块半径,即轧辊半径17.3.2 冷轧管时的轴向力周期式冷轧管机轧件从变形区轧出的速度取决于轧辊的主动传动齿轮的节圆半径,不是由轧辊的瞬时轧制半径决定,从而使变形工具对轧件产生一定的轴向力。