当前位置:文档之家› 国内外天然气制合成气的技术研究进展

国内外天然气制合成气的技术研究进展

国内外天然气制合成气技术进展徐俊忠(西南石油大学化学化学化工学院,四川成都610500)摘要:本文综述了国内外天然气制合成气技术的研究进展,主要介绍了甲烷部分氧化技术(包括固定床工艺、流化床工艺和陶瓷膜工艺),甲烷临氧化制备合成气技术(包括甲烷临氧CO 2重整制合成气、甲烷临氧自热三重整制合成气和甲烷临氧水蒸气重整制合成气),水蒸气转化制备合成气,CO 2转化法制合成气,自热式转化法制合成气,以及新出现的激光促进表面反应技术和等离子体技术。

关键词:天然气,制备,合成气,技术进展T hermal cracking gas of h ydrocarbon separation method were reviewedXu Junzhong(College of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu610500)Abstract:In the paper,the progress on preparation of synthetic gas from natural gas using different processes were described.methane partial oxidation process was introduced(Including fixed-bed process,fluidized-bed process and ceramic membrane process),the preparation of methane oxidation syngas technology(autothermal CO 2reforming(ATR-CO 2),triple-reforming of methane and autothermal H 2O reforming (ATR-H 2O)),water vapor into syngas preparation,CO 2into syngas preparation,self-heating transformation ssyngas preparation,the recent discovery of laser surface reaction to promote technology and plasma technology.Key words :Natural gas,preparation,synthetic gas,technology progress1引言根据17届世界石油会议提供的调查数据,全球现已探明的天然气储量为3141071.1m ×,按油当量计这与全球探明的石油储量十分接近。

但因石油的储采比天然气的储采比高,预计石油资源40年后就会枯竭,天然气资源可维持约60年。

我国在2005年探明的天然气储量约为312103m ×,我国天然气的人均占有量仅为全球的十分之一。

对我国来讲,如何好喝的利用这些珍贵的天然气资源具有十分重要的意义。

[1]天然气资源的分布特点是集中在少数国家和边远地区,全球70%以上的天然气资源在俄罗斯和中东,我国的天然气资源主要分布在新疆塔里木、陕甘宁鄂尔多斯和川东地区。

[2]天然气资源远离市场,天然气输运的费用约为石油的5~10倍。

如何将天然气输运供给市场,成为天然气工业要解决的首要问题。

陆上天然气一般采用管道气态输送,经济规模大于a m 310101×。

海运采用船舶运输液化天然气,建立天然气液化站的经济规模大于a m 310101×。

对于中小规模的天然气田(特别是开采石油伴生的油田气),利用天然气制合成油(GTL )技术就地将天然气转化为液态烃或甲醇等容易输运的燃料和化学品是一种较好的途径。

我国属于油气资源贫乏的国家,近十年来我国三大石化集团都在积极寻求国外合作伙伴,开发海外油气资源,采用GTL 技术将天然气就地转化为液态能源载体后输运回国是一种可供选择的较好途径。

天然气主要成分为甲烷,甲烷是清洁的能源和优质的化工原料。

燃烧等油当量天然气释放的CO 2分别为石油的69%、煤的57%,不产生粉尘,使用方便,是理想的民用和工业燃料。

就全球来看,目前天然气的主要用途用于发电、民用和工业燃料,仅有5%~7%的天然气用作化工原料。

天然气联合循环发电比燃煤发电效率高、投资少、占地少、建厂周期短、操作弹性大(用于电网的调峰)。

国外天然气发电占天然气用量的25%~30%,我国近年来天然气发电在北京等大城市也发展很快。

天然气的化工利用主要是通过间接途径,即先将天然气转化为合成气(H 2+CO ),然后制备乙醇、醋酸、乙二醇和乙烯4种基础性的二碳产品。

[3]直接将天然气转化为化学品的方法,在工业上应用的较少,大都还处于实验室研究阶段。

由于石油资源日益短缺和环保要求日趋严格,GTL 、天然气制烯烃(GTO )、生产含氧化合物和天然气制氢等特别受到关注,一直是天然气转化利用的活跃领域。

2天然气制备合成气的方法2.1甲烷部分氧化制备合成气甲烷催化部分氧化制合成气是一温和的放热反应,在催化剂存在下,氧气和甲烷进行部分氧化反应,使甲烷氧化成CO和H 2。

molkJ H H CO O CH 6.22;25.0224−=∆+⎯→⎯+该反应可在较低温度(750~800℃)下达到90%以上的热力学平衡转化,反应接触时间小于0.01秒,可避免高温非催化部分氧化法伴生的燃烧反应,CO 和H 2的选择性高达95%,生成合成气n(H 2):n(CO)约为2,适合于合成甲醇和F-T合成等后续工业过程。

自20世纪90年代以来,针对甲烷催化部分氧化反应所采用的氧化剂、原料配比、催化剂体系、工艺条件和反应器的不同已开发出固定床工艺、流化床工艺以及陶瓷膜工艺等,对这些工艺进行开发的国外公司主要有British Petroleum 公司、Shell 公司、Exxon 公司和Eltron 公司等。

[4]2.1.1固定床工艺固定床工艺是目前文献报道较多的工艺,其反应大多在石英微型固定床反应器上进行,所采用的催化剂体系为Pt 、Rh 、Ru 等贵金属或Ni 基催化剂,反应条件为低压、高空速105)(kg h L •、600~800℃、n(H 2):n(CO)约为2,其氧源主要是纯氧,当合成气产品用于制备合成氨时,也可采用空气或富氧空气作为氧源。

如中国科学院大连化学物理研究所就是采用空气或富氧空气,使空气或富氧空气中的氧和CH 4在多组分非贵金属镍基催化剂作用下直接氧化成CO和H 2,甲烷转化率、H2和CO的选择性均大于90%。

反应条件为:600~1000℃、常压、)(1010~15kg h L •×。

该方法具有常压、高空速的优点,可取代常规的蒸汽转化生产合成氨原料气。

为了使氧气得到充分转化,Tops φe 公司还开发了一项将甲烷催化部分氧化反应在多个分开的阶段中实施的专利技术,即在每一阶段里只将一小部分化学计量的氧气加入到甲烷气体中,使之通过一个催化剂区域而发生部分氧化反应,每一阶段中的氧化反应可使加入的氧气基本上得到完全转化。

[5]2.1.2流化床工艺流化床工艺的特点是催化剂可循环使用和原料适应性强。

该工艺所采用的催化剂与固定床体系类似,可使用贵金属或Ni基催化剂,而甲烷转化率和合成气的选择性也能很好地满足要求。

对于该工艺的开发,许多研究公司都在原料中引进了水,可有效地消除积炭。

Shell 公司开发的一种新的专利技术就是采用流化床工艺进行甲烷部分氧化制备合成气,该流化床工艺所采用的反应器类似提升管,催化剂被产物合成气携带离开反应器后,在收集器中收集后,再被原料气带回反应器,从而使催化剂形成循环。

经过催化剂收集器的产物气再通过废热锅炉回收热量,并对产物气中残留的催化剂进行二次回收。

原料O 2和水蒸汽的混合物、天然气都可携带催化剂分开进料,这种设计可将旋风分离器料退出来的催化剂温度(高达1000℃)降低,避免原料气在反应器入口混合时由于高温而导致爆炸,同时也可十分有效地消除催化剂积炭。

除了Shell 公司开发的流化床工艺以外,Exxon 公司也开发出一种流化床工艺,以氧气、甲烷和水的混合气分开进料,在大于900℃、2.634MPa 和20~100um 的Ni/Al 2O 3催化剂存在下操作,可得到90%左右的CH 4转化率、86%CO 和100%H 2选择性。

采用分别进料方式,水蒸汽被用来消除积炭的生成。

产物气需以400℃/s 的降温速率被冷却,以阻止合成气在降温过程中发生CO 的歧化和甲烷化反应。

2.1.3陶瓷膜工艺由于甲烷催化部分氧化反应需要用纯氧作氧化剂,用传统的空气分离方法制纯氧使工艺能耗提高,且设备庞大,成本费用高昂。

近期,国内外一些研究人员都将研究热点集中在不必用氧分离装置的陶瓷膜工艺的开发上。

此种工艺采用空气代替纯氧,利用催化陶瓷膜(混合导体透氧膜)在高温下将空气中的氧转化为氧离子,通过陶瓷膜中的氧离子空位传递到另一侧的催化剂薄层表面而发生甲烷部分氧化反应。

该技术使制氧过程与催化氧化过程在同一反应器中进行,从而大大简化了操作过程,可使合成气成本降低三到五成,使甲烷催化部分氧化技术更具吸引力。

[6]2.2甲烷临氧化制合成气甲烷临氧化制备合成气的方法有甲烷临氧二氧化碳重整、甲烷临氧水蒸气重整及甲烷-二氧化碳-水-氧气耦合三重整反应。

[7]2.2.1临氧化CO2自热重整制合成气传统的POM反应器通常可以分为3种:即固定床反应器、蜂窝或发泡状独石为催化剂的整体型反应器及流化床反应器。

POM反应容易形成局部高温,而甲烷二氧化碳重整反应能耗高、催化剂易积炭失活。

研究人员将甲烷部分氧化、二氧化碳重整反应相互耦合,即为ATR-CO2(autothermal reforming,ATR-CO2)反应。

对工艺条件、反应装置、催化剂活性及稳定性等方面均做了广泛研究。

甲烷临氧CO2重整反应具有以下优点:能量耦合、H2/CO可调变、抑制积炭。

因此该反应过程是合理利用天然气、节约能源,同时减少温室气体的一条有效途径。

ATR-CO2制合成气反应是个非常复杂的反应,其可能反应有:氧化、重整、变换、脱氢和甲烷化等十多个反应。

由于该反应体系过于复杂,可能发生的反应过多,真实机理至今尚无法进行深入研究。

2.2.2临氧自热三重整制合成气三重整反应是指CO2重整、甲烷水蒸气重整以及甲烷部分氧化3个反应在同一个反应器内同时进行的反应,即3个反应耦合在一起。

反应原料中各组分的含量可以调节,从而使生成的合成气的V(H2)/V(CO)值可调,故该过程操作灵活。

相关主题