三重积分的计算方法:三重积分的计算是化为三次积分进行的。
其实质是计算一个定积分(一重积分)和一个二重积分。
从顺序看:如果先做定积分⎰21),,(z z dz z y x f ,再做二重积分⎰⎰Dd y x F σ),(,就是“投影法”,也即“先一后二”。
步骤为:找Ω及在xoy 面投影域D 。
多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。
σd dz z y x f dv z y x f Dz z ⎰⎰⎰⎰⎰⎰Ω=21]),,([),,(如果先做二重积分⎰⎰zD d z y x f σ),,(再做定积分⎰21)(c c dz z F ,就是“截面法”,也即“先二后一”。
步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。
区域z D 的边界曲面都是z 的函数。
计算区域z D 上的二重积分⎰⎰zD d z y x f σ),,(,完成了“先二”这一步(二重积分);进而计算定积分⎰21)(c c dz z F ,完成“后一”这一步。
dz d z y x f dv z y x f c c D z]),,([),,(21σ⎰⎰⎰⎰⎰⎰Ω=当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。
为了简化积分的计算,还有如何选择适当的坐标系计算的问题。
可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面)(1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲面中有较多的平面时,常用直角坐标系计算)(2) D 是圆域(或其部分),且被积函数形如)(),(22xyf y x f +时,可选择柱面坐标系计算(当Ω为圆柱体或圆锥体时,常用柱面坐标计算)(3)Ω是球体或球顶锥体,且被积函数形如)(222z y x f ++时,可选择球面坐标系计算以上是一般常见的三重积分的计算方法。
对Ω向其它坐标面投影或Ω不易作出的情形不赘述。
三重积分的计算方法小结:1.对三重积分,采用“投影法”还是“截面法”,要视积分域Ω及被积函数f(x,y,z)的情况选取。
一般地,投影法(先一后二):较直观易掌握;截面法(先二后一): z D 是Ω在z 处的截面,其边界曲线方程易写错,故较难一些。
特殊地,对z D 积分时,f(x,y,z)与x,y 无关,可直接计算z D S 。
因而Ω中只要],[b a z ∈, 且f(x,y,z)仅含z 时,选取“截面法”更佳。
2.对坐标系的选取,当Ω为柱体,锥体,或由柱面,锥面,旋转抛物面与其它曲面所围成的形体;被积函数为仅含z 或)(22y x zf +时,可考虑用柱面坐标计算。
三重积分的计算方法例题:补例1:计算三重积分⎰⎰⎰Ω=zdxdydz I ,其中Ω为平面1=++z y x 与三个坐标面0,0,0===z y x 围成的闭区域。
解1“投影法” 1.画出Ω及在xoy 面投影域D. 2. “穿线”y x z --≤≤10X 型 D :xy x -≤≤≤≤101∴Ω:y x z x y x --≤≤-≤≤≤≤101013.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰-----Ω+---=--===1010322110101102]31)1()1[(21)1(21dx y y x y x dy y x dx zdz dydx zdxdydz I x xyx x241]4123[61)1(6110410323=-+-=-=⎰x x x x dx x解2“截面法”1.画出Ω。
2. ]1,0[∈z 过点z 作垂直于z 轴的平面截Ω得z D 。
z D 是两直角边为x,y 的直角三角形,z y z x -=-=1,13.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰====Ω1110][][zz zD D D dz zS dz dxdy z dz zdxdy zdxdydz I⎰⎰⎰=+-=--==10321010241)2(21)1)(1(21)21(dz z z z dz z z z dz xy z补例2:计算⎰⎰⎰+dv y x 22,其中Ω是222z y x =+和z=1围成的闭区域。
解1“投影法”1.画出Ω及在xoy 面投影域D. 由⎩⎨⎧=+=1222z y x z 消去z ,得122=+y x 即D :122≤+y x2. “穿线”122≤≤+z y x ,X 型 D :⎪⎩⎪⎨⎧-≤≤--≤≤-221111xy x x ∴ ⎪⎪⎩⎪⎪⎨⎧≤≤+-≤≤--≤≤-Ω11111:2222z y x x y x x3.计算⎰⎰⎰⎰⎰⎰⎰⎰Ω---+-----=+-+=+=+xxyx x x dy y x y x dxdz y x dydxdv y x 11111112222221122222226)1(π注:可用柱坐标计算。
解2“截面法”1.画出Ω。
2. ]1,0[∈z 过点z 作垂直于z 轴的平面截Ω得z D :222z y x ≤+z D : ⎩⎨⎧≤≤≤≤zr 020πθ用柱坐标计算 ⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω10020:z zr πθ3.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω====+=+1010200101030322222632]31[2][][zD z z dz z dz r dz dr r d dz dxdy y x dv y x ππππθ补例3:化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中Ω:222x 2z 2-=+=及y x z 所围成的闭区域。
解:1.画出Ω及在xoy 面上的投影域D.由 ⎪⎩⎪⎨⎧-=+=22222xz y x z 消去z ,得122=+y x 即D : 122≤+y x2.“穿线” 22222x z y x -≤≤+X 型 D :⎪⎩⎪⎨⎧-≤≤--≤≤-221111xy x x Ω:⎪⎪⎩⎪⎪⎨⎧-≤≤+-≤≤--≤≤-22222221111x z y x x y x x3.计算 ⎰⎰⎰⎰⎰⎰Ω-----+==11112222222),,(),,(x x x y x dz z y x f dydxdxdydz z y x f I注:当),,(z y x f 为已知的解析式时可用柱坐标计算。
补例4:计算⎰⎰⎰Ωzdv ,其中Ω为22226y x z y x z +=--=及所围成的闭区域。
解1“投影法”1.画出Ω及在xoy 面投影域D , 用柱坐标计算由⎪⎩⎪⎨⎧===z z r y r x θθsin cos 化Ω的边界曲面方程为:z=6-r 2,z=r2.解262=⎩⎨⎧=-=r r z r z 得 ∴D :2≤r 即⎩⎨⎧≤≤≤≤2020r πθ“穿线”26r z r -≤≤ ∴⎪⎩⎪⎨⎧-≤≤≤≤≤≤Ω262020:r z r r πθ3.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰---Ω===Dr rr rr rdr z r zdz rdrd rdrd zdz zdv 22262026262]21[2][ππθθ ⎰⎰=+-=--=2522222392)1336(])6[(πππdr r r r dr r r r 。
解2“截面法”1.画出Ω。
如图:Ω由r z r z =-=及26围成。
2. ]6,2[]2,0[]6,0[Y =∈z 21Ω+Ω=Ω1Ω由z=r 与z=2围成; ]2,0[∈z ,z D :z r ≤1Ω:⎪⎩⎪⎨⎧≤≤≤≤≤≤20020z z r πθ2Ω由z=2与z=26r -围成; ]6,2[∈z ,z D :z r -≤62Ω:⎪⎩⎪⎨⎧≤≤-≤≤≤≤626020z z r πθ3.计算⎰⎰⎰Ωzdv =⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+=+ΩΩ2621212][][z z D D dz rdrd z dz rdrd z zdv zdv θθ⎰⎰⎰⎰⎰⎰=-+=-+=+=2622362222622392)6(])6([)]([21πππππdz z z dz z dz z z dz z z dz zS dz zS z z D D 注:被积函数z 是柱坐标中的第三个变量,不能用第二个坐标r 代换。
补例5:计算⎰⎰⎰+dv y x )(22,其中Ω由不等式A z y x a ≤++≤≤2220,0≤z 所确定。
解:用球坐标计算。
由⎪⎩⎪⎨⎧===φρφθρφθρcos sin sin sin cos z y x 得Ω的边界曲面的球坐标方程:A a ≤≤ρP Ω∈,连结OP=ρ,其与z 轴正向的夹角为φ,OP=ρ。
P 在xoy 面的投影为P ',连结P O ',其与x 轴正向的 夹角为θ。
∴Ω:A a ≤≤ρ,20πφ≤≤,πθ20≤≤⎰⎰⎰⎰⎰⎰Ω=+ππρφρφρφθ202022222sin )sin ()(Aa d d d dv y x =⎰253]51[sin 2πφρφπd A a =)(154132)(52sin )(52555520355a A a A d a A -=⨯⨯-=-⎰ππφφππ三重积分的计算方法练习1. 计算⎰⎰⎰+dv y x )22(,其中Ω是旋转面z y x 222=+与平面z=2,z=8所围成的闭区域。
2. 计算⎰⎰⎰Ω+dv z x )(,其中Ω是锥面22y x z +=与球面221y x z --=所围成的闭区域。
为了检测三重积分计算的掌握情况,请同学们按照例题的格式,独立完成以上的练习,答案后续。