当前位置:文档之家› 高等数学在实际生活中的应用

高等数学在实际生活中的应用

高等数学知识在实际生活中的应用
一、数学建模的应用
数学建模的一般方法是理论分析的方法,即根据客观事物本身的性质,分析因果关系,在适当的假设下用数学工具去描述其数量特征。

(一)数学建模的一般方法和步骤
(1)了解问题,明确目的。

在建模前要对实际问题的背景有深刻的了解,进行全面的、深入细致的观察。

明确所要解决问题的目的和要求,并按要求收集必要的数据。

(2)对问题进行简化和假设。

一般地,一个问题是复杂的,涉及的方面较多,不可能考虑到所有的因素,这就要求我们在明确目的、掌握资料的基础上抓住主要矛盾,舍去一些次要因素,对问题进行适当的简化,提出几条合理的假设。

不同的简化和假设,有可能得出不同的模型和结果。

(3)建立模型。

在所作简化和假设的基础上,选择适当的数学理论和方法建立数学模型。

在保证精度的前提下应尽量用简单的数学方法,以便推广使用。

(4)对模型进行分析、检验和修改。

建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。

一般地,一个模型要经过反复地修改才能成功。

(5)模型的应用。

用已建立的模型分析、解释已有的现象,并
预测未来的发展趋势,以便给人们的决策提供参考。

归纳起来,数学建模的主要步骤可以用下面的框图来说明:
图1
(二)数学建模的范例
例 教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚?
这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得越近越好呢?
先建立一个非常简单的模型: 模型1:
先对问题进行如下假设:
1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。

2.看黑板的清楚程度只与视角的大小有关。

设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。

由假设知:
ab b
a x a
b x b a ab
x x b a tna x
b x a 2)(tan 1tan tan )tan(,tan ,tan 2-≤
+
-=+-=+-=-∴=
βαβαβαβα
所以,当且仅当ab
x =
时,)tan(βα-最大,从而视角βα-最大。

从结果我们可以看出,最佳的座位既不在最前面,也不在最后面。

坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。

下面我们在原有模型的基础上,将问题复杂一些。

模型2:设教室是一间阶梯教室,如图2.3-2所示。

为了简化计算我们将阶梯面看成一个斜面,与水平面成γ角,以黑板所在直线为y 轴,以水平线为x 轴,建立坐标系(见图2.3-2)。

则直线O E 的方程(除原点)为:
γtan x y = )0(>x
若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为
)tan ,(γx x ,
则:x
x b x
x a γβγαtan tan ,tan tan -=-=
所以β
αβ
αβαtan tan 1tan tan tan(+-=
-)
x
x b x x a x x b x x a γγγ
γtan tan 1tan tan -⋅
-+---=
x
x x b a ab x b
a 22tan )tan tan (γγγ++-+
-=

x
x x b a ab x x f 2
2tan )tan tan ()(γγγ++-+
=,要使)tan(βα-最大,只要
图2.3-2
)(x f 最小就可以了。

对)(x f 求导得:
2
22'
)tan 1()(x ab
x x f -+=
γ

γ2tan 1+>
ab x 时,
('>)x f ,则
)
(x f 随x
的增大而增大;当
γ
2tan 10+<
<ab x 时,0('>)
x f ,则)(x f 随x 的增大而减小,由因为)(x f 是连续的,所以当γ
2tan 1+=ab x 时,)(x f 取最小值,也就是γ
2tan 1+=
ab
x 时,
学生的视角最大。

通过这两个模型,我们便可以解释为什么学生总愿意坐在中间几排。

模型1和模型2所应用的基本知识都是相同的,只是因为假设的教室的环境不同,建立的模型有些细微差别,所以结果不同,但这两个结果都是基本符合实际的。

在解题过程中,我们只考虑了一个因素,那就是视角,其实我们还可以考虑更多的因素,比如:前面学生对后面学生的遮挡,学生看黑板的舒适度(视线与水平面成多少度角最舒服),等。

我们考虑的因素越多,所的结果就会越合理。

但有时如果考虑的因素过多、过细的话,解题过程就会相当繁琐,有时甚至得不到结果。

所以“简化假设”时就需要我们冷静的分析,在众多的因素中抓住主要矛盾,作出最佳的选择。

因此在建立模型时既要符合实际,又要力求计算简便。

二、矩阵在实际生活中的应用 (一)有关矩阵的乘法
矩阵A =⎢⎣⎡c a ⎥⎦⎤d b 与→a =⎥⎦

⎢⎣⎡y x 相乘
=→
a A ⎢⎣⎡c a ⎥

⎤d b ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡++dy cx by ax =→
)(a A λ⎢⎣⎡c a ⎥


d b ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x λ=⎢⎣⎡c a ⎥⎦
⎤d b ⎥⎦⎤⎢⎣⎡y x λλ=⎥⎦⎤⎢⎣⎡++y d x c y b x a λλλλ=⎥⎦⎤
⎢⎣⎡++dy cx by ax λλλλ=→a A λ →



+=+b A a A b a A )( →



+=+b A a A b a A 2121)(λλλλ
(二)矩阵应用的范例—人口流动问题
例 假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在若干年内保持不变,而社会调查表明:
(1) 在这40万就业人员中,目前约有25万人从事农业,10万
人从事工业,5万人经商;
(2) 在务农人员中,每年约有10%改为务工,10%改为经商; (3) 在务工人员中,每年约有10%改为务农,20%改为经商; (4) 在经商人员中,每年约有10%改为务农,20%改为务工。

现欲预测一、二年后从事各业人员的人数,以及经过多年之后,从事各业人员总数之发展趋势。

解: 若用三维向量(x i ,y i ,z i )T 表示第i 年后从事这三种职业的人员总数,则已知(x 0,y 0,z 0)T =(25,10,5)T 。

而欲求(x 1,y 1,z 1)T ,(x 2,y 2,z 2)T 并考察在n →∞时(x n ,y n ,z n )T 的发展趋势。

依题意,一年后,从事农、工、商的人员总数应为 即
⎪⎩⎪
⎨⎧++=++=++=0001
00010
0017.02.01.02.07.01.01.01.08.0z
y x Z z y x Y z y x X ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0000001117.02.01.02.07.01.01.01.08.0z y x A z y x Z Y X
以(x 0,y 0,z 0)T =(25,10,5)T 代入上式,即得:
即一年业人员的人数分别为21.5万10.5万、8万人。

以及
即两年后从事各业人员的人数分别为19.05万、11.1万、9.85万人。

进而推得:
即n 年之后从事各业人员的人数完全由
决定。

在这个问题的求解过程中,我们应用到矩阵的乘法、转置等,将一个实际问题数学化,进而解决了实际生活中的人口流动问题。

这个问题看似复杂,但通过对矩阵的正确应用,我们成功的将其解决。

11121.510.58X Y Z ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫
⎝⎛85.91.1105.190002
111222z y x A z y x A Z Y X ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---000111z y x A z y x A Z Y X n
n n n n n n n
A。

相关主题