当前位置:文档之家› 红外探测器

红外探测器

红外探测器1 红外探测器应用发展红外探测器由于诸多特点在军用和民用领域都取得了广泛的应用,红外探测器在红外系统中起着至关重要的作用。

简述国内外红外探测器部分最新的研究成果和动态,关于红外成像技术发展,讨论红红外探测器应用中的一些新技术、发展重点和难点,对以后一段时期内的红外探测器发展及其市场前景进行展望。

2 红外探测器应用背景红外探测器具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点,在军用和民用领域都得到了极为广泛的应用。

在军事上,包括对军事目标的搜索、观瞄、侦察、探测、识别与跟踪;对远、中、近程军事目标的监视、告警、预警与跟踪;红外探测器的精确制导;武器平台的驾驶、导航;探测隐身武器系统,进行光电对抗等。

在民用领域,在工业、遥感、医学、消费电子、测试计量和科学研究等许多方面也得到广泛应用。

目前国外红外成像器件已发展到了智能灵巧型的第四代,在光电材料、生产工艺及系统应用等方面都取得了丰硕的成果,但是国内红外相关技术研究与生产起步较晚,并且受工业基础制约,发展远滞后于国外,而市场需求却持续强劲,无论在军用还是民用领域都有巨大的发展空间。

3 红外探测器现状分析从第一代红外探测器至今已有40余年历史,按照其特点可分为四代:第一代(1970s-80s)主要是以单元、多元器件进行光机串/并扫描成像;第二代(1990s-2000s)是以4×288为代表的扫描型焦平面;第三代是凝视型焦平面;目前正在发展的可称为第四代,以大面阵、高分辨率、多波段、智能灵巧型系统级芯片为主要特点,具有高性能数字信号处理功能,甚至具备单片多波段融合探测与识别能力。

在红外探测器发展过程中,新材料、新工艺、新器件、新方法不断涌现,按工作环境可分为致冷型和非致冷型两大类。

3.1 高性能致冷型红外探测器此类器件需要在低温下(77K)工作,相比非致冷器件成像质量优异、探测灵敏度高,通常又可分为传统型和量子阱焦平面探测器。

其中前者主要采用碲镉汞(HgCdTe)、锑化铟(InSb)两种材料,又以碲镉汞占主导地位,应用最为广泛。

国际上知名研究机构有法国Sofradir、英国SELEX、德国AIM、美国DRS、Raytheon 等。

已研制、生产的高水平商用焦平面探测器有:长波640×480、中波1024×1024、短波4096×4096、双色/双波段1280×720。

量子阱焦平面探测器由于材料和器件工艺成熟、产量高、成本低,经过近15 年的快速发展,已成为长波致冷型焦平面器件的两大主要分支之一。

目前在美国和英、法、德、瑞典等欧洲发达国家已研制出全电视制式的640×512(包含640×480)长波焦平面器件和中等规模的320×240(包含256×256,384×288 格式)双色器件产品。

以美国NASA/ARL 联合研制的大面阵1024×1024 长波焦平面和NASA/JPL 研制的640×512 四色焦平面,代表了当前GaAs/AlGaAs 量子阱红外探测器的最高研究水平。

3.2 非致冷型红外探测器室温工作的红外成像系统不仅可以降低昂贵的致冷费用,而且还可以简化器件制作工艺,便于集成轻便化与携带使用。

经过多年的努力,红外探测器已经从工作温度不到100K的传统1光子型半导体红外探测器发展到200K 左右的半导体超晶格量子点探测器,进而又发展到了工作温度较高的半导体热探测器和超巨磁电阻热探测器等,探测器材料在此起到了至关重要的作用。

美国Raytheon、Lockheed-Martin、Boeing Indigo,英国BAE、QinetiQ,法国ULIS,日本NEC 等公司长期从事非致冷红外探测器研究,所采用的材料主要有3 种:热释电材料、氧化钒和非晶硅。

最早用于红外瞄准具的是基于钛酸锶钡(BST)热释电材料的320×240 非致冷焦平面探测器。

目前基于钛酸锶钡、钽钪酸铅(PST)热释电材料和基于氧化钒、非晶硅热敏电阻材料探测器技术也已成熟,美国、英国VO x 产品规模已达到640×480,法国α-Si产品和英国热释电产品规模均为384×288。

3.3 国内红外探测器发展现状国内从上世纪80 年代后期陆续开始了红外焦平面探测器的研制。

尽管国内的第二代、第三代红外焦平面技术在材料、器件工艺、读出电路、杜瓦和致冷等方面取得一些进展,完成了少数器件的研制,但还有许多关键技术还没有完全突破,可靠性、工程化、通用化与标准化水平有待进一步提高;第四代产品还刚开始进行技术突破,到目前为止,只有为数很少的工程化产品提供军方使用。

目前实现批量生产的焦平面探测器组件相当于西方国家较早一段时期的水平。

红外探测器技术总体水平与西方发达国家相比仍有较大差距。

3.4 红外探测器发展趋势未来红外焦平面探测器的主要发展趋势包括:更大规格、更高性能、多色/多波段探测、信息处理高速智能化、非致冷(含提高工作温度)、光机电集成一体化等,器件制作将主要依托分子束外延(MBE)多层材料精密生长技术、微电子行业中的超大规模集成电路技术和微纳结构精细加工技术。

与此同时,一些新概念红外成像理论和技术不断提出,极大地促进了新概念红外成像系统的产生,并对今后红外成像技术的发展趋势产生明显的影响,例如多色红外成像、红外偏振成像、主/被动红外三维(3D)成像、亚像元/超分辨力红外成像、近自然感伪彩色红外成像等技术。

4 红外探测器的工作原理4.1主动式红外探测器工作原理主动红外探测器由红外发射机、红外接收机和报警控制器组成。

分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。

红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。

接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。

主动式红外探测器有单光束、双光束、四光束之分。

以发射机与接收机设置的位置不同分为对向型安装方式和反射式按装方式,反射型安装方式的接收机不是直接接收发射机发出的红外光束,而是接收由反射镜或适当的反射物(如石灰墙、门板表面光滑的油漆层)反射回的红外光束。

当反射面的位置与方向发生变化或红外发射光束和反射光束之一被阻挡而使接收机无法接收到红外反射光束时发出报警信号。

4.2被动式红外探测器工作原理被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部2分组成。

其核心是不见是红外探测器件,通过关学系统的配合作用可以探测到某个立体防范空间内的热辐射的变化被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。

单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。

这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。

因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。

多波束型采用透镜聚焦式光学系统,目前大都采用红外塑料透镜——多层光束结构的菲涅尔透镜。

这种透镜是用特殊塑料一次成型,若干个小透镜排列在一个弧面上。

所有透镜都向内部设置的热释电器件聚焦,因此灵敏度较高,只要有人在透镜视场内走动就会报警。

红外光穿透力差,在防范区内不应有高大物体,否则阴影部分有人走动将不能报警,不要正对热源和强光源,特别是空调和暖气。

否则不断变化的热气流将引起误报警。

为了解决物品遮挡问题,又发明了吸顶式被动红外入侵探测器。

安装在顶棚上向下360°范围内进行警戒,只要在防护范围内,无论从哪个方向入侵都会触发报警,在银行营业大厅,商场的公共活动区等空间较大的地方得到广泛使用。

被动式报警探测器由于探测性能好、易于布防、价格便宜而被广泛应用。

其缺点是相对于主动式探测误报率较高。

体都有恒定的体温,一般在37度左右,会发出特定波长10μm左右的红外线,被动红外探测器就是靠探测人体发射的10μm左右的红外线而进行工作的。

人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。

1.被动红外探测器是以探测人体辐射为目标的,所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。

2.为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。

3.其传感器包含两个互相串联或并联的热释电元件。

而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

4.一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。

5 红外探测器主要技术指标5.1 通光孔径热成像系统接收光学系统的入瞳直径称通光孔径。

5.2.相对孔径相对孔径是光学系统的通光孔径D与焦距f的比值,即A=D/f。

对于热红外类型的光学系统,这时一个很重要的参数,因为热像平面辐照度与相对孔径的平方成正比。

5.3.f/数f/数是光学系统相对孔径的倒数。

设光学系统的相对孔径为A=D/f(D为通光孔径,f为3焦距),1A=f/D,则数f/D是表示系统的集中f为通光孔径的多少倍。

例如,f/3表示光学系统的集中为通光孔径的三倍。

5.4.视场视场是光学系统视场角的简称。

它表示能够在光学系统像平面视场光阑内成像的空间范围。

当目标位于以光轴为轴线,顶角为视场角的圆锥内的任一点(在一定距离内)时能被光学系统发现,即成像于光学系统像平面的视场光阑内。

即使物体能在热像仪中成像的物空间的最大张角叫做视场,一般是а°×β°的矩形视场。

5.5.光谱响应红外探测器对各个波长的入射辐射的响应称为光谱响应。

一般的光电探测器均为选择性探测器。

5.6.空间分辨率应用热像仪观测时,热像仪对目标空间形状的分辨能力。

本行业中通常以mrad(毫弧度)的大小来表示。

mrad的值越小,表明其分辨率越高。

弧度值乘以半径约等于弦长,即目标的直径。

如1.3mrad的分辨率意味着可以在100m的距离上可以分辨出1.3×10-3×100=0.13m=13厘米的物体。

5.7.温度分辨率温度分辨率:可以简单定义为仪器或使观察者能从背景中精确地分辨出目标辐射的最小温度△T。

相关主题