当前位置:文档之家› 阵列感应(MIT)讲课

阵列感应(MIT)讲课

感应测井频率选择
优点: 当线圈间距不变时,对一定范围的地层电导 率(0.001-1S/m),频率高,趋肤效应影响小, 测量信号包含更多的地层信息。 趋肤效应与线圈间距成正比,间距大趋肤效 应严重,反之,趋肤效应小。要使在地层电导率
(1-5S/m)范围,视电导率实部仍然有效,大线
圈间距子阵列必须有小的工作频率。
和),使得侵入带电阻率小于地层电阻率形成低侵(也
称减阻侵入)时,一般使用双侧向测井来确定地层电阻 率。双侧向测井仪器的响应范围为0.2-40000Ω·m。
第四节 电阻率测井仪器的分类及适用范围
2、感应型 当井眼充满低矿化度泥浆,井眼电阻率较高、 地层电阻率较低,使得侵入带电阻率大于地层电 阻率(但是地层电阻率不是太低),形成高侵 (也称增阻侵入)时,一般使用感应测井来确定
第二节 阵列感应测井线圈系结构设计
二、AIT线圈系结构




8个主线圈距分别为: 6in,9in,12in,15in, 21in,27in,39in,72in。 三种频率为: 26.325kHz,52.65kHz,105 .3kHz 8组线圈使用同一频率, 又有6组线圈使用其他相 邻的两个频率。 实际有14个不同探测深 度的28个信号。
第三节 电阻率测井的历史背景与发展
1942年——Archie公式诞生。 1943年——带有照相井斜仪的三臂倾角仪研制成功, 它可以同时确定地层倾斜的方位和角度。 1949年——Doll提出感应测井几何因子理论,第一台 感应测井仪器研制成功。 1951年——Doll首先提出侧向测井的原理,研制出侧 向测井仪器,这是第一个聚焦式深探测的电阻率测井仪器。
第三节 电阻率测井的历史背景与发展
1929年8月17日——壳牌石油公司在美国加利福尼亚 进行了美国的第一次电阻率测井。 1931年——斯仑贝谢兄弟完善了连续记录的方法,研 制成第一台笔记录仪,测井曲线包括自然电位和普通电阻 率测井曲线。 1936年——照相胶片记录仪诞生,电测井曲线已包括 自然电位、短电位、长电位以及长梯度电极系电阻率曲线。 1938年——Dress-Atlas公司使用电测井进行服务。 1939年——翁文波先生在四川隆昌的一口井中测出了 中国第一条电测井曲线(点测)。
第二节 阵列感应测井线圈系结构设计
四、HRAI线圈系结构

主发射线圈在中间, 上下各5个接收线圈 四线圈系结构 2种频率: 8kHz和32kHz

第三节 阵列感应测井频率选择
第三节 阵列感应测井频率选择
一、AIT的频率选择 发射线圈发出3种工作频率(26.325kHz,52.65kHz, 105.3kHz)信号,接收线圈不接收所有频率信号。第1 和第2短子阵列仅接收高频(105.3kHz)信号;第3和第 4子阵列同时接收高频(105.3kHz)和中频(52.65kHz) 信号;第5、第6、第7、第8子阵列同时接收中频(52.65 kHz)和低频(26.325kHz)信号。
何流体(空气、任何导电或不导电泥浆)。感应法测
量的是电导率。
第二节 电阻率测井及测井环境
二、井眼附近的测井环境 围岩 冲 洗 带 过 渡 带 围岩 渗 透 层
井 眼
井眼附近的地层模型
第三节 电阻率测井的历史背景与发展
20世纪初——地面电法勘探; 20世纪20年代后期——电测井; (世界上第一条测井曲线是1927 年由法国人斯仑贝谢兄弟在法国 东北部阿尔萨斯省皮切尔布朗油 田的一口井内通过点测测得的。


第一章 电阻率测井基础
第一节 第二节 第三节 第四节 岩电方程 电阻率测井及测井环境 电阻率测井的历史背景与发展 电阻率测井仪器的分类及适用范围
主 要 内 容




第二章 阵列感应测井
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 引言 阵列感应测井线圈系结构设计 阵列感应测井频率选择 阵列感应测井的优化聚焦合成处理 阵列感应测井影响因素校正 径向电阻率反演 阵列感应测井的测井环境和工艺要求 阵列感应测井原始资料的质量控制
1ft垂直聚焦 匹配曲线
2ft垂直聚焦 匹配曲线
4ft垂直聚焦 匹配曲线
第二节 阵列感应测井线圈系结构设计
一、线圈系的设计要求 1)使线圈系能够采集到足够的地层信息; 2)各子阵列本身的探测深度与要合成达到的探测深度有 合理的关系; 3)各子阵列之间的重复信息最少; 4)接收线圈与发射线圈的间距是测井采样间距的整数倍; 5)最短子阵列的间距应考虑最大纵向分辨率(最小分层 能力)和测量的稳定性;
第三节 阵列感应测井频率选择
优点: 第一,数据堆栈技术在每一个测量点输出经多次迭 加平均后的时间序列波形,它增强了小信号的测量精度 和抗干扰能力。 第二,时间序列波形可以让工程技术人员观察测井 异常并进行质量控制;检查测井系统存在的问题,如曲 线畸形,大干扰等。 第三,地层电阻率动态测量范围大。 第四,测量丰富的井下地层信息。HDIL有7个子阵 列,可同时测量8个频率的实部和虚部信号,直接测量 得到112条曲线,是AIT的4倍。
20世纪50年代末——六线圈系的感应测井仪投入使用。
1963年——研制出双感应测井仪器。 1972年——研制出双侧向测井仪器。
第三节 电阻率测井的历史背景与发展
1983年——BPB公司首先推出了早期的阵列感应测井 仪(数字感应测井仪,AIS) 。 1990年——斯仑贝谢公司发表了AIT仪器的初步研究 成果,并进入商用阶段。 1992年——Atlas公司开始研究高分辨率阵列仪HDIL, 1995年生产出仪器样机。 1995年——戴维斯等研制成新一代侧向测井仪-方位 电阻率成像测井仪ARI;史密斯等研制出高分辨率方位侧 向测井电极系HALS。 1998年——斯仑贝谢公司推出阵列侧向测井仪器。
二、HDIL的频率选择 HDIL的井下探头数据采集中提出了波形采集和数 据堆栈技术(Beard,1996)。发射线圈发射由微处理 器产生包含8个奇次谐波频率(10kHz,30kHz,50kHz, 70kHz ,90kHz,110kHz ,130kHz,150kHz )的近似 方波信号,所有接收线圈均接收随时间变化的波形信号。 波形经数字化后用数据堆栈技术传输到地面,地面计算 机软件再用傅立叶变换分离8个频率信号,包括实部与 虚部信号。
第一节 岩电方程
3、地层电阻率和饱和度方程 abRw Rt= ———— Swnφm 式中, a、b—常数 m—胶结指数或孔隙度指数
n—饱和度指数
第二节 电阻率测井及测井环境
一、电阻率测井
电阻率测井方法主要分为两种: 第一种是传导电流法,该方法使用直流电,需要 井眼中有导电泥浆。传导电流法测量的是电阻率。 第二种是感应法,使用交流电,井内可以含有任

第三章 高分辨率阵列感应(HDIL)处理软件
第一章 电阻率测井基础
第一节 岩电方程
1、电阻率与电导率
U A R= —— · —— I L 式中, U—物体两端的电压 I—通过的电流
A—物体的横截面积 L—物体的长度
σ=1/R
第一节 岩电方程
2、地层水电阻率 3647.5 82 Rw=(0.0123+ ————) · ———— 0.955 Cw 1.8T+39 式中, Cw—地层水矿化度 T—地层温度
第三节 阵列感应测井频率选择
优点: 各子阵列的测量电压信号范围(0.0015S/m),对于一定的测量精度(10-6V),目 前的频率选择较好地考虑了各子阵列具有相近 的测量动态范围。例如,高电导率(大于 1S/m)时,线圈间距最长的第8子阵列,中频 信号可能失效,但低频信号仍然有效。
第三节 阵列感应测井频率选择
2、Atlas公司的高分辨率阵列感应测井仪器HDIL 线圈系由七个单侧布置的 三线圈系子阵列组成;主接收 线圈间距从6in(0.15m)到 94in(2. 39m),按对数等间 距布置;所有子阵列同时接收 包含8个频率(10kHz,30kHz, 50kHz,70kHz ,90kHz, 110kHz ,130kHz,150kHz ) 的时间序列波形,波形数字化 后送到地面,地面用快速傅立 叶变换将波形分解为实部和虚 部信号,共得到112个信号。
(1)普通电阻率测井 包括电位和梯度电极系测井,普通电阻率测井仪器属 于非聚焦电极,它受井眼和邻层的影响很大,对于薄层、 低电阻率地层以及侵入较严重的地层,测量精度会受到影 响。尤其在盐水泥浆井中,供电电极发出的电流大部分被 井内导电的盐水泥浆所分流,因此测出的视电阻率曲线难 以反映地层真电阻率。
(2)侧向测井 当井眼充满高矿化度泥浆,井眼电阻率较低、地层 电阻率较高(如碳酸盐岩或地层被高电阻率的淡水所饱
第二节 阵列感应测井线圈系结构设计
三、HDIL线圈系结构



7个主线圈距分别为: 6in (0.15m)到94in(2. 39m), 按对数等间距布置; 8种频率: 10kHz,30kHz,50kHz, 70kHz ,90kHz,110kHz , 130kHz,150kHz 7组线圈分别使用8种频率 实际有56个不同探测深度的 112个信号。
第四节 电阻率测井仪器的分类及适用范围
1、传导电流型 传导电流法测井也称直流电法测井,它是用供电电极 把电流注入地层,在井周围地层中形成电场,通过测量周 围地层中电场或电位的分布,来确定地层的电阻率。 要求:井内有导电泥浆,提供电流通道。 普通电阻率测井仪器和侧向测井都属于传导电流型测 井仪器。
第四节 电阻率测井仪器的分类及适用范围
3、Halliburton公司的高分辨率阵列感应测井仪器HRAI
线圈系由四线圈系组成,中间为主发射线圈,上下各布置5 个接收线圈,两个工作频率(8kHz和32kHz),同时测量实部 和虚部信号,井下数字电路将数据数字化后传到地面处理。其 径向处理和纵向处理独立实现。在径向处理前,每个子阵列的 测量均进行反褶积滤波为具有相同的纵向分辨率。径向合成处 理时,除最浅的0.25m和0.50m外,其余深曲线合成不使用浅子 阵列信号,从而使近井眼影响限制在浅测量曲线中。最终提供6 种探测深度10in(0.25m),20in(0.50m),30in(0.75m), 60in(1.50m),90in(2.25m)和120in(3.05m)的3组分辨率 1ft(0.3m),2ft(0.6m),3ft(1.2m)和实际分辨率曲线。提 供3参数(地层电阻率、冲洗带电阻率和侵入直径)反演结果。
相关主题