当前位置:文档之家› 半导体制造技术期末题库参考答案

半导体制造技术期末题库参考答案


氧化增强扩散(OED)机理 硅氧化时,在 Si-SiO2 界面附近产生了大量的填隙 Si 原子,这些过剩的填隙 Si 原子在向硅内扩散的同时,不断与空位复合,使这些过剩的填隙 Si 原子的浓度 随深度而降低。在表面附近,过剩的填隙 Si 原子可以和替位 B 相互作用,从而 使原来处于替位的 B 变为填隙 B。当填隙 B 的近邻晶格没有空位时,填隙 B 就以 填隙方式运动; 如果填隙 B 的近邻晶格出现空位时,填隙 B 又可以进入空位变为 替位 B。这样,杂质 B 就以替位-填隙交替的方式运动,其扩散速度比单纯的替
3、杂质原子的扩散方式有哪几种?它们各自发生的条件是什么?从 原子扩散的角度举例说明氧化增强扩散和氧化阻滞扩散的机理。 (第 二章)
①交换式:两相邻原子由于有足够高的能量,互相交换位置。 ②空位式:由于有晶格空位,相邻原子能移动过来。 ③填隙式:在空隙中的原子挤开晶格原子后占据其位,被挤出的原子再去挤出其他原子。 ④在空隙中的原子在晶体的原子间隙中快速移动一段距离后,最终或占据空位,或挤出晶 格上原子占据其位。 以上几种形式主要分成两大类:①替位式扩散;②填隙式扩散。 替位式扩散 主要包括交换式(所需能量高)和空位式(所需能量低,更容易发生) 如果替位杂质的近邻没有空位.则替位杂质要运动到近邻晶格位置上,就必须通过互相换 位才能实现。这种换位会引起周围晶格发生很大的畸变,需要相当大的能量,因此只有当替 位杂质的近邻晶格上出现空位,替位式扩散才比较容易发生。 填隙型扩散 挤出机制:杂质在运动过程中 “踢出”晶格位置上的硅原子进入晶格位置,成为替位杂 质,被“踢出”硅原子变为间隙原子; Frank-Turnbull 机制:也可能被 “踢出”的杂质以间隙方式进行扩散运动。当它遇到空 位时可被俘获,成为替位杂质。
1. 分别简述
RVD 和 GILD 的原理, 它们的优缺点及应用方向。
Hale Waihona Puke 答:快速气相掺杂(RVD, Rapid Vapor-phase Doping)是一种掺杂剂从气相直接向硅中扩散、 并能形成超浅结的快速掺杂工艺。 原理是利用快速热处理过程(RTP)将处在掺杂剂气氛中 的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质院子,杂质原子 直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。 RVD 技术的优势(与离子注入相比,特别是在浅结的应用上) :RVD 技术并不受注入所 带来的一些效应的影响,如:沟道效应、晶格损伤或使硅片带电。 RVD 技术的劣势:对于选择扩散来说,采用 RVD 工艺仍需要掩膜。另外,RVD 仍然要在 较高温度下完成。杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。 应用方向:主要应用在 ULSI 工艺中,例如对 DRAM 中电容的掺杂,深沟侧墙的掺杂, 甚至在 CMOS 浅源漏结的制造中也采用 RVD 技术。 气体浸没激光掺杂(GILD: Gas Immersion Laser Doping)的工作原理:使用激光器照射处 于气态源中的硅表面,使硅表面因吸收能量而变为液体层,同时气态掺杂源由于热解或 光解作用产生杂质原子,杂质原子通过液相扩散进入很薄的硅液体层,当激光照射停止 后,掺有杂质的液体层通过固相外延转变为固态结晶体,从而完成掺杂。 GILD 的优点:杂质在液体中的扩散速度非常快,使得其分布均匀,因而可以形成陡峭的 杂质分布形式。由于有再结晶过程,所以不需要做进一步的热退火。掺杂仅限于表面, 不会发生向内扩散,体内的杂质分布没有任何扰动。可以用激光束的能量和脉冲时间决 定硅表面融化层的深度。在一个系统中相继完成掺杂,退火和形成图形,极大简化了工 艺,降低系统的工艺设备成本。 GILD 的缺点:集成工艺复杂,技术尚不成熟。 GILD 的应用:MOS 与双极器件的制造,可以制备突变型杂质分布,超浅深度和极低的 串联电阻。 2. 集成电路制造中有哪几种常见的扩散工艺?各有什么特点? 答:按照原始扩散杂质源在室温下的相态可将扩散分为三类:固态源扩散,液态源扩散 与气态源扩散。 (1) 固态源扩散:常见的主要有开管扩散、箱法扩散和涂源法扩散 a.开管扩散是把杂质源和硅片分开放置在扩散炉管中,通过惰性气体将杂质蒸汽输 运只硅片表面。其特点是温度对杂质浓度和杂质分布有着直接的影响,重复性与稳 定性都很好。 b.箱法扩散是把杂质源和硅片壮在由石英或者硅做成的箱内,在氮气或氩气的保护 下进行扩散。其特点是扩散源多为杂质的氧化物,箱子具有一定的密闭性。含有杂 质的蒸汽与硅表面反应,形成含有杂质的薄氧化层,杂质由氧化层直接向硅内扩散。 其硅表面浓度基本由扩散温度下杂质在硅中的固溶度决定,均匀性较好。 c.涂源法扩散是把溶于溶剂的杂质源直接涂在待扩散的硅片表面,在高温下由遁形 其他保护进行扩散。其特点是杂质源一般是杂质的氧化物或者杂质的氧化物与惰性 氧化物的混合物,当溶剂挥发后在硅表面形成一层杂质源。这种方法的表面浓度难 以控制,且不均匀。可以通过旋转涂源工艺或化学气象淀积法改善 (2) 液态源扩散是使用携带气体通过液态源,把杂质源蒸汽带入扩散炉管。其特点是载 气除了通过携带杂质气体进入扩散炉内之外,还有一部分直接进入炉管,起到稀释
位式扩散要快。 而在氮化硅保护下的硅不发生氧化,这个区域中的杂质扩散只能 通过空位机制进行扩散,所以氧化区正下方 B 的扩散结深大于氮化硅保护区正 下方的扩散结深。磷在氧化气氛中的扩散也被增强,其机制与硼相同。 氧化阻滞扩散机理 用锑代替硼的扩散实验表明, 氧化区正下方锑的扩散结深小于氮化硅保护区下方 的扩散结深, 说明在氧化过程中锑的扩散被阻滞。这是因为控制锑扩散的主要机 制是空位。在氧化过程中,所产生的过剩间隙硅原子在向硅内扩散的同时,不断 地与空位复合,使空位浓度减小,从而降低了锑的扩散速度。
和控制浓度作用。为了保证稳定性和重复性,源温一般控制在零摄氏度。其优点是 系统简单,操作方便,成本低,效率高,重复性和均匀性好。 (3) 气态源扩散是直接将杂质气体通入炉管进行掺杂,除了气态杂质外,有时还需通入 稀释气体或者杂质源进行化学反应所需要的气体。其特点是气态杂质源多为杂质的 氢化物或卤化物,毒性很大,且易燃易爆。气态杂质源一般先在硅表面进行化学反 应生成掺杂氧化层,杂质再由氧化层向硅中扩散。
相关主题