集成电路封装工艺摘要集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个发挥集成电路芯片功能的良好环境,以使之稳定,可靠,正常的完成电路功能.但是集成电路芯片封装只能限制而不能提高芯片的功能.关键词:电子封装封装类型封装技术器件失效Integrated Circuit Packaging ProcessAbstractThe purpose of IC package, is to protect the chip from the outside or less environmental impa ct, and provide a functional integrated circuit chip to play a good environment to make it stable an d reliable, the completion of the normal circuit functions. However, IC chip package and not only restricted to enhance the function of the chip.引言电子封装是一个富于挑战、引人入胜的领域。
它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。
封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。
按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。
封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。
1.电子封装什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。
所以,在最初的微电子封装中,是用金属罐(metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。
但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。
通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。
目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。
2.部分封装的介绍金属封装是半导体器件封装的最原始的形式,它将分立器件或集成电路置于一个金属容器中,用镍作封盖并镀上金。
金属圆形外壳采用由可伐合金材料冲制成的金属底座,借助封接玻璃,在氮气保护气氛下将可伐合金引线按照规定的布线方式熔装在金属底座上,经过引线端头的切平和磨光后,再镀镍、金等惰性金属给与保护。
在底座中心进行芯片安装和在引线端头用铝硅丝进行键合。
组装完成后,用10号钢带所冲制成的镀镍封帽进行封装,构成气密的、坚固的封装结构。
金属封装的优点是气密性好,不受外界环境因素的影响。
它的缺点是价格昂贵,外型灵活性小,不能满足半导体器件日益快速发展的需要。
现在,金属封装所占的市场份额已越来越小,几乎已没有商品化的产品。
少量产品用于特殊性能要求的军事或航空航天技术中。
陶瓷封装是继金属封装后发展起来的一种封装形式,它象金属封装一样,也是气密性的,但价格低于金属封装,而且,经过几十年的不断改进,陶瓷封装的性能越来越好,尤其是陶瓷流延技术的发展,使得陶瓷封装在外型、功能方面的灵活性有了较大的发展。
目前,IBM的陶瓷基板技术已经达到100多层布线,可以将无源器件如电阻、电容、电感等都集成在陶瓷基板上,实现高密度封装。
陶瓷封装由于它的卓越性能,在航空航天、军事及许多大型计算机方面都有广泛的应用,占据了约10%左右的封装市场(从器件数量来计)。
陶瓷封装除了有气密性好的优点之外,还可实现多信号、地和电源层结构,并具有对复杂的器件进行一体化封装的能力。
它的散热性也很好。
缺点是烧结装配时尺寸精度差、介电系数高(不适用于高频电路),价格昂贵,一般主要应用于一些高端产品中。
相对而言,塑料封装自七十年代以来发展更为迅猛,已占据了90%(封装数量)以上的封装市场份额,而且,由于塑料封装在材料和工艺方面的进一步改进,这个份额还在不断上升。
塑料封装最大的优点是价格便宜,其性能价格比十分优越。
随着芯片钝化层技术和塑料封装技术的不断进步,尤其是在八十年代以来,半导体技术有了革命性的改进,芯片钝化层质量有了根本的提高,使得塑料封装尽管仍是非气密性的,但其抵抗潮气侵入而引起电子器件失效的能力已大大提高了,因此,一些以前使用金属或陶瓷封装的应用,也已渐渐被塑料封装所替代。
3.封装中用到的技术在塑料封装中,引线键合是主要的互连技术,尽管现在已发展了TAB(tape automated bonding)、FC(flip chip)等其它互连技术,但占主导地位的技术仍然是引线键合技术。
在塑料封装中使用的引线主要是金线,其直径一般在0.025mm到0.032mm(1.00mil到1.25 mil)。
引线的长度常在1.5mm到3mm (60mil到120mil) 之间,而弧圈的高度可比芯片所在平面到0.75mm(30mil)。
键合技术有热压焊(thermocompression),热超声焊(thermosonic)等。
这些技术的优点是容易形成球形(所谓的球焊技术,ball bonding),并且可以防止金线氧化。
为了降低成本,也在研究用其它金属丝,如铝、铜、银、钯等来替代金丝键合。
热压焊的条件是二种金属表面紧紧接触,控制时间、温度、压力,使得二种金属发生连接。
表面粗糙(不平整)、有氧化层形成或是有化学沾污、吸潮等都会影响到键合效果,降低键合强度。
热压焊的温度在300°C到400°C,时间一般为40毫秒(通常,加上寻找键合位置等程序,键合速度是每秒二线)。
超声焊的优点是可避免高温,因为它用20到60 KHz的超声振动提供焊接所需的能量,所以,焊接温度可以降低一些。
超声焊是所谓的楔焊(wedge bonding)而不是球焊(ball bonding),在引线与焊盘连接后,再用夹具或利刃切断引线(clamp tear or table tear)。
楔焊的缺点是必须旋转芯片和基座,以使它们始终处于楔焊方向上,所以,楔焊的速度就必须放慢。
它的优点是焊接面积与引线面积相差不大,可以用于微细间距(fine pitch)的键合。
将热和超声能量同时用于键合,就是所谓的热超声焊。
与热压焊相比,热超声焊最大的优点是将键合温度从350℃降到250℃左右(也有人认为可以用100℃到150℃的条件),这可以大大降低在铝焊盘上形成Au-Al金属间化合物的可能性,延长器件寿命,同时降低了电路参数的漂移。
在引线键合方面的改进主要是因为需要越来越薄的封装,有些超薄封装的厚度仅有0.4毫米左右。
所以,引线环(loop)从一般的8至12密尔(200到300微米)减小到4至5密尔(100到125微米),这样,引线的张力就很大,引线绷得很紧。
楔焊的优点是可以用于微细间距焊盘上,适合于高密度封装,它甚至可用于焊盘间距小于75微米的键合,而若采用球焊,则1密尔(25微米)的金丝,其球焊的直径在2.5到4密尔(63至102微米)之间,要比楔焊大得多。
塑料封装的成型技术也有许多种,包括转移成型技术、喷射成型技术(inject molding)、预成型技术(premolding)等,但最主要的成型技术是转移成型技术(transfer molding)。
转移成型使用的材料一般为热固性聚合物(thermosetting polymer)。
所谓的热固性聚合物是指在低温时,聚合物是塑性的或流动的,但当将其加热到一定温度时,即发生所谓的交联反应(cross-linking),形成刚性固体。
再将其加热时,只能变软而不可能熔化、流动。
在塑料封装中使用的典型成型技术的工艺过程如下:将已贴装好芯片并完成引线键合的框架带置于模具中,将塑封料的预成型块在预热炉中加热(预热温度在90℃到95℃之间),然后放进转移成型机的转移罐中。
在转移成型活塞的压力之下,塑封料被挤压到浇道中,并经过浇口注入模腔(在整个过程中,模具温度保持在170℃到175℃左右)。
塑封料在模具中快速固化,经过一段时间的保压,使得模块达到一定的硬度,然后用顶杆顶出模块,成型过程就完成了。
用转移成型法密封微电子器件,有许多优点。
它的技术和设备都比较成熟,工艺周期短,成本低,几乎没有后整理(finish)方面的问题,适合于大批量生产。
当然,它也有一些明显的缺点:塑封料的利用率不高(在转移罐、壁和浇道中的材料均无法重复使用,约有20%到40%的塑封料被浪费);使用标准的框架材料,对于扩展转移成型技术至较先进的封装技术(如TAB等)不利;对于高密度封装有限制。
对于大多数塑封料来说,在模具中保压几分钟后,模块的硬度足可以达到允许顶出,但是,聚合物的固化(聚合)并未全部完成。
由于材料的聚合度(固化程度)强烈影响材料的玻璃化转变温度及热应力,所以,促使材料全部固化以达到一个稳定的状态,对于提高器件可靠性是十分重要的,后固化就是为了提高塑封料的聚合度而必须的工艺步骤,一般后固化条件为170℃到175℃,2至4小时。
目前,也发展了一些快速固化(fast cure molding compound)的塑封料,在使用这些材料时,就可以省去后固化工序,提高生产效率。
在封装成型过程中,塑封料可能会从二块模具的合缝处渗出来,流到模块外的框架材料上。
若是塑封料只在模块外的框架上形成薄薄的一层,面积也很小,通常称为树脂溢出(resin bleed)。
若渗出部分较多、较厚,则称为毛刺(flash)或是飞边毛刺(flash and strain)。
造成溢料或毛刺的原因很复杂,一般认为是与模具设计、注模条件及塑封料本身有关。
毛刺的厚度一般要薄于10微米,它对于后续工序如切筋打弯等工艺带来麻烦,甚至会损坏机器。
因此,在切筋打弯工序之前,要进行去飞边毛刺工序(deflash)。
随着模具设计的改进,以及严格控制注模条件,毛刺问题越来越不严重了,在一些比较先进的封装工艺中,已不再进行去飞边毛刺的工序了。
去飞边毛刺工序工艺主要有:介质去飞边毛刺(media deflash)、溶剂去飞边毛刺(solvent deflash)、水去飞边毛刺(water deflash)。