当前位置:文档之家› 完整word版点集拓扑讲义学习笔记

完整word版点集拓扑讲义学习笔记

度量空间与连续映射2章第它们的定义域和值域从数学分析中已经熟知单变量和多变量的连续函数,都是欧氏空间(直线,平面或空间等等)或是其中的一部分.在这一章中我们将连续首先将连续函数的定义域和值域主要特征抽象出来用以定义度量空间,然函数的主要特征抽象出来用以定义度量空间之间的连续映射(参见§2.1).随给出拓扑空间和拓扑空间之间的连续映射(参见§2.2).后将两者再度抽象,后再逐步提出拓扑空间中的一些基本问题如邻域,闭包,内部,边界,基和子基,序列等等.度量空间与连续映射§2.1本节重点:掌握拓扑学中度量的概念及度量空间中的连续映射的概念.注意区别:数学分析中度量、连续映射的概念与本节中度量、连续映射的概念.应细细体会证明的方法.注意,在本节的证明中,R→Rf:首先让我们回忆一下在数学分析中学习过的连续函数的定义.函数,使>00,存在实数δ∈R称为在点处是连续的,如果对于任意实数ε>|x-得对于任何x∈R,当|f(x)-f()|<ε.在这个定义中只涉及时|<δ,有两个实数之间的距离(即两个实数之差的绝对值)这个概念;为了验证一个函而与实数的数在某点处的连续性往往只要用到关于上述距离的最基本的性质,其它性质无关,关于多元函数的连续性情形也完全类似.以下,我们从这一考.察出发,抽象出度量和度量空间的概念,z∈X,,xy是一个集合,定义2.1.1 设Xρ:X×X→R.如果对于任何有页40 共** 页1 第(1)(正定性),ρ(x,y)≥0并且ρ(x,y)=0当且仅当x=y;(2)(对称性)ρ(x,y)=ρ(y,x);(3)(三角不等式)ρ(x,z)≤ρ(x,y)+ρ(y,z)则称ρ是集合X的一个度量.如果ρ是集合X的一个度量,称(X,ρ)是一个度量空间,或称X是一个对于ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已作交代,不提它不至于引起混淆,这时我们称X是一个度量空间.此外,对于任意两点x,y ∈X,实数ρ(x,y)称为从点x到点y的距离.着重理解:度量的本质是什么?例2.1.1 实数空间R.对于实数集合R,定义ρ:R×R→R如下:对于任意x,y∈R,令ρ(x,y)=|x-y|.容易验证ρ是R的一个度量,因此偶对(R,ρ)是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量ρ,称为R 的通常度量,并且常常略而不提,迳称R为实数空间.(今后我们说实数空间,均指具有通常度量的实数空间.)维欧氏空间.例2.1.2 n对于实数集合R的n重笛卡儿积=R×R×…×R()x=×→R如下:对于任意ρ定义,: y=,令)=y xρ(,页40 共* 页2 第是的一个度量,因此偶容易验证(详见课本本节最后部分的附录)ρ,ρ)是一个度量空间.(这个度量空间特别地称为n维欧氏空间.对这里定,称为义的度量ρ的通常度量,并且常常略而不提,迳称为n维欧氏空间.2维欧氏空间通常称为欧氏平面或平面.(今后说通常度量,均指满足这种公式的度量)例2.1.3 Hilbert空间H.记H为平方收敛的所有实数序列构成的集合,即)|<∞} = {x=(H定义ρ如下:对于任意=()∈H),yx =((x,y)= 令ρ(即验证<∞)以及验证ρ是说明这个定义是合理的H的一个度量,均请参见课本本节最后部分的附录.偶对(H,ρ)是一个度量空间.这个度量空间特别地称为Hilbert空间.这里定义的度量ρ称为H的通常度量,并且常常略而不提,迳称H为Hilbert 空间.例2.1.4 离散的度量空间.设(X,ρ)是一个度量空间.称(X,ρ)是离散的,或者称ρ是X x∈X,存在一个实数>0使得ρ(的一个离散度量,如果对于每一个x,y) y∈X,x≠y,成立.>对于任何页40 共** 页3 第例如我们假定X是一个集合,定义ρ:X×X→R使得对于任何x,y∈X,有(x,y)=ρ容易验证ρ是X的一个离散的度量,因此度量空间(X,ρ)是离散的.通过这几个例子,可知,度量也是一种映射,但它的象空间是实数.离散的度量空间或许是我们以前未曾接触过的一类空间,但今后会发现它的性质是简单的.定义2.1.2 设(X,ρ)是一个度量空间,x∈X.对于任意给定的实数ε>0,集合{y∈X|ρ(x,y)<ε}),或,称为一个以x为中心以ε为半径的球形邻记作B(x,ε域,简称为x的一个球形邻域,有时也称为x的一个ε邻域.此处的球形邻域是球状的吗?定理2.1.1 度量空间(X,ρ)的球形邻域具有以下基本性质:(1)每一点x∈X,至少有一个球形邻域,并且点x属于它的每一个球形邻域;(2)对于点x∈X的任意两个球形邻域,存在x的一个球形邻域同时包含于两者;(3) 如果y∈X属于x∈X的某一个球形邻域,则y有一个球形邻域包含于x的那个球形邻域.证明:(1)设x∈X.对于每一个实数ε>0,B(x,ε)是x的一个球形邻域,所以x至少有一个球形邻域;由于ρ(x,x)=0,所以x属于它的每一个球形邻域.页40 共* 页4 第,)是x∈XB(x (2)如果B(x的两个球形邻域,任意选取实,)和数}min{ ,则易见有ε>0,使得ε<,)∩B(x,))B (x,εB(x 即B(x,ε)满足要求.).显然.>0.如果xρ(,yz∈B,(3)设y∈B(xε=).令ε-,),则(y )<xy,)+ρ)+ρ(y,x=ε(((z,x)≤ρz,yρ,y)ε).这证明B(εB(x,).,所以z∈B(x定义2.1.3 设A是度量空间X的一个子集.如果A中的每一个点都有一个球形邻域包含于A(即对于每一个a∈A,存在实数ε>0使得B(a,ε)A,则称A是度量空间X中的一个开集.注意:此处的开集仅是度量空间的开集.例2.1.5 实数空间R中的开区间都是开集.设a,b∈R,a<b.我们说开区间(a,b)={x∈R|a<x<b}是R中的一个开集.这是因为如果x∈(a,b),若令ε=min{x-a,b-x},则有B(x,ε)(a,b).也同样容易证明无限的开区间(a,∞)={x∈R|x>a},(-∞,b)={x∈R|x<b}(-∞,∞)=R都是R中的开集.然而闭区间[a,b]={x∈R|a≤x≤b}页40 共** 页5 第却不是R中的开集.因为对于a∈[a,b]而言,任何ε>0,B(x,ε)[a,b]都不成立.类似地,半开半闭的区间(a,b]={x∈R|a<x≤b},[a,b)={x∈R|a≤x<b}无限的闭区问[a,∞)={x∈R|x≥a},(-∞,b]={x∈R|x≤b}都不是R中的开集.定理2.1.2 度量空间X中的开集具有以下性质:本身和空集都是开集;X (1)集合(2)任意两个开集的交是一个开集;(3)任意一个开集族(即由开集构成的族)的并是一个开集.证明根据定理2.1.1(1)X中的每一个元素x都有一个球形邻域,这个球形邻域当然包含在X 满足开集的条件;空集X中不包含任何一个点,也自然地可以认为中,所以它满足开集的条件.的一个球形邻x如果x∈U∩V,则存在U设和V是X中的两个开集.(2).根据V,的一个球形邻域B(x)包含于域B(x,)包含于U,也存在x ,(xε)同时包含于BB(2),x有一个球形邻域(x,)和B定理2.1.1,),因此(x,)U∩V B(x,B(x,)∩B(xε)由于U∩V中的每一点都有一个球形邻域包含于U∩V,因此U∩V是一个开集.页40 共* 页6 第中的开集构成的子集族.如果,则存在是一个由X3)设*Α(A有一个球形邻域包含于是一个开集,所以由于∈*x使得,显x∈然这个球形邻域也包含于中的一个开集..这证明是X此外,根据定理2.1.1(3)可见,每一个球形邻域都是开集.球形邻域与开集有何联系?为了讨论问题的方便,我们将球形邻域的概念稍稍作一点推广.定义2.1.4 设x是度量空间X中的一个点,U是X的一个子集.如果存在一个开集V满足条件:x∈VU,则称U是点x的一个邻域.下面这个定理为邻域的定义提供了一个等价的说法,并且表明从球形邻域推广为邻域是自然的事情.定理2.1.3 设x是度量空间X中的一个点.则X的子集U是x的一个邻域的充分必要条件是x有某一个球形邻域包含于U.证明如果U是点x的一个邻域,根据邻域的定义存在开集V使得x∈VU,又根据开集的定义,x有一个球形邻域包含于V,从而这个球形邻域也就包含于U.这证明U满足定理的条件.反之,如果U满足定理中的条件,由于球形邻域都是开集,因此U是x的邻域.现在我们把数学分析中的连续函数的概念推广为度量空间之间的连续映射.页40 共** 页7 第f(如果对于)是两个度量空间,f:X→Y,∈X以及定义2.1.5 设X和Y (ε),,存在δ的某一个球形邻域B),的任何一个球形邻域B(f(),),则称映射在点处是连续的.(),δ)),εB(使得f(Bf(如果映射f在X的每一个点x∈X处连续,则称f是一个连续映射.以上的这个定义是数学分析中函数连续性定义的纯粹形式推广.因为如果在点f处连续,可以说成:和Y设ρ中的度量,则和分别是度量空间X对于任意给定的实数ε>0,存在实数δ>0使得对于任何x∈X只要ρ(x,x∈B (,δ)便有)<δ(即f(f(x)∈B(.(即(f(x),f())ε)).<ε),下面的这个定理是把度量空间和度量空间之间的连续映射的概念推广为拓扑空间和拓扑空间之间的连续映射的出发点.以及∈X.X→Y则下述条件Y是两个度量空间,f:和定理2.1.4 设X:和(*2)*(1)和(2)分别等价于条件(1))f处是连续的;在点(1的每一个邻域的原象是的一个邻域;(1)*f( )(2)f是连续的;(2)*Y中的每一个开集的原象是X中的一个开集.()的一个邻域.根令U为f成立.1)蕴涵()*:设(1)1证明条件(),ε)包含于B(fU(.由于f)有一个球形邻域2.1.3据定理,f(处是连续的,所以在点有一个球形邻域((BfBεB(fB)),δ((),).然而,(()使得,δf 页40 共* 页8 第),所以(),εU)()是)B),这证明((U(U的一个邻域.,δ(f1)*成立.任意给定)的一个邻条件(1)*蕴涵(1).设条件(,根据定理2.1.3是(的一个邻域.f(),ε域B(εf(),),)则(B )包含于δ(,有一个球形邻域B ().f),ε(B((f(B在点处连续.因此,δ))B(f(),ε).这证明f中的一个开集,为Y*.设条件(2)成立.令V2条件()蕴涵(2)是一个开集,所Vx)∈V.由于).对于每一个x∈U,我们有f(U(=VxU是1)*,)的一个邻域.由于以V是f(xf在每一点处都连续,故根据(由U=∪x∈UUx.U.易见Ux的一个邻域.于是有包含x的某一个开集Ux使得 U是一个开集.都是开集,根据定理2.1.2,于每一个Ux)的x是f(2)*成立,对于任意x∈X,设U条件(2)*蕴涵(2).设(根.U)((的一个开集x)V U.从而Vx∈)f一个邻域,即存在包含(x的一个邻域,对于U据条件(2)*,(V)是一个开集,所以)是x(是任意选取的,所以处连续.由于点x在点*成立,于是fx)而言,条件(1 f是一个连续映射.从这个定理可以看出:度量空间之间的一个映射是否是连续的,或者在某一点处是否是连续的,本质上只与度量空间中的开集有关(注意,邻域是通过开集定义的).这就导致我们甩开度量这个概念,参照度量空间中开集的基本)建立拓扑空间和拓扑空间之间的连续映射的概念性质(定理2.1.2作业:P47 1.2.3.4.页40 共** 页9 第拓扑空间与连续映射§2.2:本节重点. 并在此空间上建立起来的连续映射的概念拓扑与拓扑空间的概念,: 注意区别. 拓扑空间的开集与度量空间开集的异同;连续映射概念的异同现在我们遵循前一节末尾提到的思路,即从开集及其基本性质(定理 2.1.2)出发来建立拓扑空间的概念.ττ满足如下X是一个集合,定义2.2.1 设X的一个子集族.如果是条件:τ∈(;lX),Tτ;(2)若A,B∈A∩B∈,则(3)若τ是X的一个拓扑.则称ττ)是一个拓扑空间,或X如果,是集合X的一个拓扑,则称偶对(τT是一个相对于拓扑而言的拓扑空间;此外称集合的每一个元素都叫做Xττ.即:A∈A是开集.)或(开集XX拓扑空间(,)中的一个(此定义与度量空间的开集的性质一样吗?留给大家思考)经过简单的归纳立即可见,以上定义中的条件(2)蕴涵着:有限多个开集的交仍是开集,条件(3)蕴涵着:任意多个开集的并仍是开集.页40 共* 页10 第现在首先将度量空间纳入拓扑空间的范畴.中的所有开集构为由ρ)是一个度量空间·令定义X2.2.2 设(X,的一个拓扑.我们称2.1.2)是,(X 为成的集族.根据定理,X的X由.此外我们约定:如果没有另外的说明,我们提到度度量ρ诱导出来的拓扑)的拓扑时,指的就是拓扑;在称度量空间(X,X,ρρ)为拓扑量空间(空间时,指的就是拓扑空间(X,)空),HilbertR因此,实数空间,n维欧氏空间(特别,欧氏平面间H都可以叫做拓扑空间,它们各自的拓扑便是由例2.1.1,例2.1.2和例2.1.3中定义的各自的度量所诱导出来的拓扑.例2.2.1 平庸空间.TT是X,}.容易验证,设X是一个集合.令的一个拓扑,称之为 ={X T)为一个平庸空间.在平庸空间(;并且我们称拓扑空间(X,X,的X平庸拓扑T)中,有且仅有两个开集,即X本身和空集.例2.2.2 离散空间.TP(X),即由XX是一个集合.令 =的所有子集构成的族.容易验证,设TT)为一X;并且我们称拓扑空间(,的一个拓扑,称之为X的离散拓扑是X T)中,X的每一个子集都是开集.在离散空间(X,个离散空间.T ={,{a},{a,b},{a,{a,bc}.令,b,c}}.=2.2.3 例设X TT)是一个拓扑空间.这个拓扑X的一个拓扑,因此(,容易验证,是X空间既不是平庸空间又不是离散空间.页40 共** 页11 第例2.2.4 有限补空间.设X是一个集合.首先我们重申:当我们考虑的问题中的基础集自明时,我们并不每次提起.因此在后文中对于X的每一个子集A,它的补集X-A我们写为.令X|T ={U 的一个有限子集}∪{是X}T是X的一个拓扑:先验证;另外,根据定义便有∈T.)X∈T (因为 =)(1T如果A和B之中有一个是空集,则A∩B∈T,假定A(2)设A,B∈和B T .的一个有限子集,所以A∩B∈是都不是空集.这时X,显然有)设(3.令,则如果X任意选取.这时是设的一个有限子集,所以P是X的一个拓扑,称之为3),X的有限补拓根据上述(1),(2)和(P)称为一个有限补空间.,扑.拓扑空间(X例2.2.5 可数补空间.设X是一个集合.令T 的一个可数子集}∪{X}={U X|是T 是X2.2.4通过与例中完全类似的做法容易验证(请读者自证)的一个T )称为一个可数补空间.,的可数补拓扑.拓扑空间(拓扑,称之为XX页40 共* 页12 第一个令人关心的问题是拓扑空间是否真的要比度量空间的范围更广一点?换句话就是问:是否每一个拓扑空间的拓扑都可以由某一个度量诱导出来?P使)是一个拓扑空间.如果存在X的一个度量设(X,ρ定义2.2.3PP)是一个ρ诱导出来的拓扑可度量化空,则称(得拓扑X,即是由度量间.根据这个定义,前述问题即是:是否每一个拓扑空间都是可度量化空间?每一个只含有限个点的度量空间作为拓扑可以看出,和从§2.1中的习题23空间都是离散空间.然而一个平庸空间如果含有多于一个点的话,它肯定不是中给出的那个空间只含有三个点,2.2.3离散空间,因此它不是可度量化的;例拓扑空间是比可度量空间的但不是离散空间,也不是可度量化的.由此可见,进一步的问题是满足一些什么条件的拓扑空间是可度量化的?这范围要广泛.是点集拓扑学中的重要问题之一,以后我们将专门讨论.现在我们来将度量空间之间的连续映射的概念推广为拓扑空间之间的连续映射.U定义2.2.4 是两个拓扑空间,f:X→Y.如果中每一个开集Y设X和Y的一个连续映射,或简称Xf是中的一个开集,则称X到Y(的原象U)是映射f连续.按这种方式定义拓扑空间之间的连续映射,明显是受到了§2.1中的定理2.1.4的启发.并且那个定理也保证了:当X和Y是两个度量空间时,如果f:X→Y是从度量空间X到度量空间Y的一个连续映射,那么它也是从拓扑空间X到拓扑空间Y的一个连续映射,反之亦然.(按照约定,涉及的拓扑当然都是指诱导拓扑)页40 共** 页13 第但所指出的却是连续映射的最重要的下面的这个定理尽管证明十分容易,性质.都是拓扑空间.则,Y和ZX定理2.2.1 设是一个连续映射;1:X→X)恒同映射:(也是连续映射.和g:Y→Z都是连续映射,则gof:X→Z(2)如果f:X→Y l连续.),所以证明()设2f:X→Y,g:Y →Z都是连续映射(连续.这证明gof如在线性代数中我们考在数学科学的许多学科中都要涉及两类基本对象.虑线性空间和线性变换,在群论中我们考虑群和同态,在集合论中我们考虑集合和映射,在不同的几何学中考虑各自的图形和各自的变换等等.并且对于后群论中的同构,者都要提出一类来予以重视,例如线性代数中的(线性)同构,集合论中的—一映射,以及初等几何学中的刚体运动(即平移加旋转)等等.我们现在已经提出了两类基本对象,即拓扑空间和连续映射.下面将从连续映射中挑出重要的一类来给予特别的关注.是一个—一映射,f:X→Y Y设X和是两个拓扑空间.如果2.2.5 定义和f是一个同胚映射或同胚.都是连续的,则称:Y→X并且f定理2.2.2 设X都是拓扑空间.则Y和Z,:X→X)恒同映射(1是一个同胚;)如果f:X→Y(:Y→X也是一个同胚;2是一个同胚,则页40 共* 页14 第:X→Z也是一个同胚.:Y→Z都是同胚,则gof(3)如果f:X→Y和g 2.2.1,定理证明以下证明中所涉及的根据,可参见定理.5.4..53和定理1.l是一个—一映射,并且(l是同胚.),都是连续的,从而是一个—一映射,并且f和)设f:X→Y是一个同胚.因此f都(2也都是连续的,也是一个—一映射并且是连续的.于是和所以也是一个同胚.,f都是—一映射,并且因此f和gf)设:X→Y和g:Y→Z都是同胚.(3和且gof射,并—因此gof也是一映,g续和都是连的. gof是一个同胚.都是连续的.所以:X→Y,则f和Y是两个拓扑空间.如果存在一个同胚设定义2.2.6 X .同胚于YX是同胚的,或称X与Y同胚,或称X称拓扑空间与拓扑空间Y 粗略地说,同胚的两个空间实际上便是两个具有相同拓扑结构的空间.都是拓扑空间.则和Z设X,Y定理2.2.3X同胚;1)X与(同胚;Y与X同胚,则(2)如来X与Y Z同胚.同胚,则与ZX与同胚,)如果(3X与YY 2.2.2直接得到.证明从定理在任意给定的一个由拓扑空间组成的族中,我们可以说:根据定理2.2.3,因而同胚关系将这个拓扑空两个拓扑空间是否同胚这一关系是一个等价关系.间族分为互不相交的等价类,使得属于同一类的拓扑空间彼此同胚,属于不同类的拓扑空间彼此不同胚.页40 共** 页15 第,如果为某一个拓扑空间所具有,则必为与其同胚P拓扑空间的某种性质.换言之,拓拓扑不变性质的任何一个拓扑空间所具有,则称此性质P是一个扑不变性质即为同胚的拓扑空间所共有的性质.拓扑学的中心任务便是研究拓扑不变性质.至此我们已经做完了将数学分析中我们熟知的欧氏空间和欧氏空间之间的连续函数的概念,经由度量空间和度量空间之间的连续映射,一直抽象为拓扑空间和拓扑空间之间的连续映射这样一个在数学的历史上经过了很长的一在数学的发展过程中对所研究的问题不断地加以抽象这段时期才完成的工作.种做法是屡见不鲜的,但每一次的抽象都是把握住旧的研究对象(或其中的某也正因为如此,是一个去粗取精的过程.一个方面)的精粹而进行的一次提升,新的概念和理论往往有更多的包容.一方面它使我们对“空间”和“连续”有更为纯正拓扑学无疑也是如此,的认识,另一方面也包含了无法列入以往的理论中的新的研究对象(特别是许多无法作为度量空间处理的映射空间).这一切读者在学习的过程中必然会不断地加深体会.作业:P55 2,5,6,8,9,10§2.3 邻域与邻域系本节重点:掌握邻域的概念及邻域的性质;掌握连续映射的两种定义;掌握证明开集与邻域的证明方法(今后证明开集常用定理2.3.1).页40 共* 页16 第我们在数学分析中定义映射的连续性是从“局部”到“整体”的,也就是说先定义映射在某一点处的连续性,然后再定义这个映射本身的连续性.然而对于拓扑空间的映射而言,先定义映射本身的连续性更为方便,所以我们先在§2.2中做好了;现在轮到给出映射在某一点处的连续性的定义了.在定理2.1.4中我们已经发现,为此只要有一个适当的称之为“邻域”的概念,而在§2.1中定义度量空间的邻域时又只用到“开集”.因此我们先在拓扑空间中建立邻域的概念然后再给出映射在某一点处的连续性的概念,这些概念的给出一点也不会使我们感到突然.P)是一个拓扑空间,x∈X.如果U是X的一个子集,定义2.3.1 设(X,P使得x∈VU,则称U满足条件:存在一个开集V∈是点x的一个邻域.点x的所有邻域构成的x的子集族称为点x的邻域系.易见,如果U是包含着点x的一个开集,那么它一定是x的一个邻域,于是我们称U是点x的一个开邻域.首先注意,当我们把一个度量空间看作拓扑空间时(这时,空间的拓扑是由度量诱导出来的拓扑),一个集合是否是某一个点的邻域,无论是按§2.1中的定义或者是按这里的定义,都是一回事.定理2.3.1 拓扑空间X的一个子集U是开集的充分必要条件是U是它的每一点的邻域,即只要x∈U,U便是x的一个邻域.是空集,以下证明充分性.如果U证明定理中条件的必要性是明显的. U ≠.根据定理中的条件,当然U是一个开集.下设使得故U=,根据拓扑的定义,U是一个开集.定理2.3.2概括了邻域系的基本性质.页40 共** 页17 第是一个拓扑空间.记为点x∈XX的邻域系.则:定理2.3.2 设U∈x∈X,;并且如果≠,则(1)对于任何x∈U;U ∩V∈,V∈ U,则;(2)如果V∈并且U; V (3)如果,则U∈V∈满足条件:(a)VU和,则存在(b) (4)如果对于任何U∈ V ∈.y∈V,有P且由定义,∴X∈证明(1),∴,≠如果 X,X∈,则x∈UU∈PP和使得∈则存在设2()U,V∈.U.和∈ T,∴U∩V∈成立.从而我们有, U∈,并且设3()P.V满足条件已经满足条件(a),根4()设U∈.令V∈据定理2.3.1,它也满足条件(b).以下定理表明,我们完全可以从邻域系的概念出发来建立拓扑空间理论,这种做法在点集拓扑发展的早期常被采用.这种做法也许显得自然一点,但不如现在流行的从开集概念出发定义拓扑来得简洁.定理2.3.3 设X是一个集合.又设对于每一点x∈X指定了x的一个子集族,并且它们满足定理2.3.2中的条件(1)~(4).则x有惟一的一P子集族x ∈X,个拓扑T使得对于每一点在拓扑空间恰是点x(X,)中的邻域系.(证明略)页40 共* 页18 第现在我们来将度量空间之间的连续映射在一点处的连续性的概念推广到拓扑空间之间的映射中去.定义2.3.2 设X和Y是两个拓扑空间,f:X→Y,x∈X.如果的原象(U)是Ux∈X的一个邻域,则称映射ff(x)∈Y的每一个邻域是一个在点x处连续的映射,或简称映射f在点x处连续.与连续映射的情形一样,按这种方式定义拓扑空间之间的映射在某一点处的连续性也明显地是受到了§2.1中的定理2.1.4的启发.并且该定理也保证了:当X 和Y是两个度量空间时,如果f: X→Y是从度量空间X到度量空间Y的一个映射,它在某一点x∈X处连续,那么它也是从拓扑空间X到拓扑空间Y的一个在点x处连续的映射;反之亦然.这里我们也有与定理2.2.l类似的定理.定理2.3.4 设X,Y和Z都是拓扑空间.则)恒同映射:X→X在每一点x∈X(1处连续;(2)如果f:X→Y在点x∈X处连续,g:Y→Z在点f(x)处连续,则gof:X→Z在x处连续.证明请读者自己补上.以下定理则建立了“局部的”连续性概念和“整体的”连续性概念之间的联系.定理2.3.5 设X和Y是两个拓扑空间,f:X→Y.则映射f连续当且仅当对于每一点x∈X,映射f在点x处连续.证明必要性:设映射f连续,这证明f在点X处连续.页40 共** 页19 第x处连续.充分性:设对于每一点x∈X,映射f在点f连续.这就证明了作业: ,掌握证明一个映射是否连续的方法.掌握证明一个子集是邻域的方法§2.4 导集,闭集,闭包本节重点:熟练掌握凝聚点、导集、闭集、闭包的概念;区别一个点属于导集或闭包的概念上的不同;掌握一个点属于导集或闭集或闭包的充要条件;掌握用“闭集”叙述的连续映射的充要条件.如果在一个拓扑空间中给定了一个子集,那么拓扑空间中的每一个点相对于这个子集而言“处境”各自不同,因此可以对它们进行分类处理.定义2.4.1 设X是一个拓扑空间,AX.如果点x∈X的每一个邻域U ,则称点xx中异于的点,即U∩(A-{x}是集合)≠A的一个凝聚中都有A点或极限点.集合A的所有凝聚点构成的集合称为A的导集,记作d(A).如=,)U ∩(A-{x}使得即存在x果x∈A并且不是A的凝聚点,x的一个邻域U 的一个孤立点.为Ax则称):(牢记即页40 共* 页20 第在上述定义之中,凝聚点、导集、以及孤立点的定义无一例外地都依赖于它所在的拓扑空间的那个给定的拓扑.因此,当你在讨论问题时涉及了多个拓扑而又谈到某个凝聚点时,你必须明确你所谈的凝聚点是相对于哪个拓扑而言,不容许产生任何混淆.由于我们将要定义的许多概念绝大多数都是依赖于给定拓扑的,因此类似于这里谈到的问题今后几乎时时都会发生,我们不每次都作类似的注释,而请读者自己留心.某些读者可能已经在诸如欧氏空间中接触过刚刚定义的这些概念,但绝不要以为对欧氏空间有效的性质,例如欧氏空间中凝聚点的性质,对一般的拓扑空间都有效.以下两个例子可以帮助读者澄清某些不正确的潜在印象.例2.4.1 离散空间中集合的凝聚点和导集.设X是一个离散空间,A是X中的一个任意子集.由于X中的每一个单点集都是开集,因此如果x∈X,则X有一个邻域{x},使得,以上论证说明,集合A没有任何一个凝聚点,)=. d(A从而A的导集是空集,即2.4.2 例平庸空间中集合的凝聚点和导集.是X中的一个任意子集.我们分三种情形讨论:设X是一个平庸空间,A A显然没有任何一个凝聚点,亦即第1种情形:.这时A=.(可以参见定理2.4.1中第(d(A)l=)条的证明.)。

相关主题