当前位置:文档之家› 耦合电感电路课件

耦合电感电路课件


因为Φ21≤Φ11 ,Φ12≤Φ22 ,所以可以得出 两线圈的互感系数小于等于两线圈自感系数的几何平均值, 即
M L1 L2
上式仅说明互感M比 L1 L2小(或相等),但并不能说明 M比 L1 L2小到什么程度。为此,工程上常用耦合系数K来表 示两线圈的耦合松紧程度,其定义为 M K L L
线圈)
di1 di M 2 dt dt di2 di1 u2 L2 M dt dt u1 L1
di2 di1 u 2 L2 M dt dt
(6-8)
图6.6 磁通相消情况 互感线圈模型
图6.7所示是测试互感线圈同名端的一种实验线路,把 其中一个线圈通过开关S接到一个直流电源上,把一个直流 电压表接到另一线圈上。当开关迅速闭合时,就有随时间增 长的电流从电源正极流入线圈端钮1,这时大于零,如果电 压表指针正向偏转,这说明端钮2为实际高电位端(直流电压 表的正极接端钮2),由此可以判定端钮1和端钮2是同名端; 如果电压表指针反向偏转,这说明端钮 2为实际高电位端, 这种情况就判定端钮1与端钮 2 是同名端。
第6章 耦合电感电路 和理想变压器
(时间:4次课,8学时)
耦合电感和变压器在工程中有着广泛地应用。本
章首先讲述了耦合电感的基本概念,然后介绍了耦合 电感的去耦等效,最后分析了空心变压器电路,重点 讨论理想变压器的特性,从而对变压器有个初步认识。
第6章 耦合电感电路和理想变压器


6.1 耦合电感元件
在1≤t≤2s时 所以
i1 t (10t 20)
uab t R1i1 t 10 (10t 20) (100t 200)V di d ubc t L1 5 (10t 20) 50V dt dt uac t uab t ubc (t ) (100t 150)V d 10t 20 di1 ude t M 1 10V dt dt
12
i2
上面一式表明线圈1对线圈2的互感系数M21,等于穿越 线圈2的互感磁链与激发该磁链的线圈1中的电流之比。 二式表明线圈2对线圈1的互感系数M12,等于穿越线圈 1的互感磁链与激发该磁链的线圈2中的电流之比。 可以证明 M21=M12=M
我们以后不再加下标,一律用M表示两线圈的互感系 数,简称互感。互感的单位与自感相同,也是亨利(H)。
根据uac、ude的表达式,画出其波形如图6.8(c)、 图6.8(d)所示。
例6-2 图6.9所示互感线圈模型电路,同名端位置及
各线圈电压、电流的参考方向均标示在图上,试列写出该互
感线圈的电压、电流关系式(指微分关系)。
图6.9 例6-2图
解:先写出第1个线圈L1上的电压u1。因L1上的电压 u1与i1参考方向非关联,所以u1中的自感压降为 L1 di1 。 观察本互感线圈的同名端位置及两电流i1、i2的流向,可知
图 6.2耦合系数k与线圈相互位置的关系
6.1.2 耦合电感元件的电压、电流关系
当有互感的两线圈上都有电流时,穿越每一线圈的磁 链可以看成是自磁链与互磁链之和。当自磁通与互磁通方 向一致时,称磁通相助,如图6.3所示。这种情况,交链线 圈1、2的磁链分别为
1 11 12 L1i1 Mi2
di1 t ubc t L1 dt
电流源两端电压
di1 t uac t uab t ubc t R1i1 t L1 dt
下面进行具体的计算。 在0≤t≤时, i1(t)=10tA (由给出的波形写出) 所以
uab t R1i1 t 10 10t 100tV dii d ubc t Li 5 10t 50V dt dt uac t uab t ubc t 100t 50V d 10t di1 ude t M 1 10V dt dt
在t≥2s时 i1(t)=0 (由观察波形即知)
所以 uab=0,ubc=0,uac=0,ude=0 故可得
0 t 1s 100t 50V uac t 100t 150V 1 t 2s 0 其余 0 t 1s 10 V ude t 10 V 1 t 2s 0 其余
假定穿过线圈每一匝的磁通都相等,则交链线圈1的 自感磁链与互感磁链分别为ψ11 =N1Φ11,ψ12=N1Φ12;交 链线圈2的自感磁链与互感磁链分别为ψ22=N2Φ22, ψ21=N2Φ21 。
图 6.1 耦合电感元件
类似于自感系数的定义,互感系数的定义为:
M 21
21
i1
M 12
由上述分析可见,具有互感的两线圈上的电压,在设其参 考方向与线圈上电流参考方向关联的条件下,等于自感压降 与互感压降的代数和,磁通相助取加号;磁通相消取减号。 对于自感电压 L1 di1 、L2 di2 取决于本电感的u、i的参考方 向是否关联,若关联,自感电压取正;反之取负。 di di M 而互感电压 M 、 dt 的符号这样确定:当两线圈电流均 dt 从同名端流入(或流出)时,线圈中磁通相助,互感电压与
1 2

K
M L1 L2
可知,0≤K≤1,K值越大,说明两线圈间的耦合越紧, 当K=1时,称全耦合, 当K=0时,说明两线圈没有耦合。
耦合系数K的大小与两线圈的结构、相互位置以及周 围磁介质有关。如图6.2(a)所示的两线圈绕在一起,其K值 可能接近1。相反,如图6.2(b)所示,两线圈相互垂直,其K 值可能近似于零。由此可见,改变或调整两线圈的相互位 置,可以改变耦合系数K的大小;当L1 、L2 一定时,也就 相应地改变互感M的大小。
例6-1 图6.8(a)所示电路,已知R1=10Ω,
L1=5H,L2=2H,M=1H,i1(t)波形如图6.8(b)所 示。试求电流源两端电压uac(t)及开路电压ude(t)。
图6.8 例6-1图
解:由于第2个线圈开路,其电流为零,所以R2上电压 为零,L2上自感电压为零,L2上仅有电流i1在其上产生的互 感电压。这一电压也就是d、e开路时的电压。根据i1的参考 方向及同名端位置,可知 di1 t ude t M dt 由于第2个线圈上电流为零,所以对第1个线圈不产生互 感电压,L1上仅有自感电压
dt
i1从同名端流出,i2亦从同名端流出,属磁通相助情况,u1
中的互感压降部分与其自感压降部分同号,即为
M di2 dt

将L1上自感压降部分与互感压降部分代数和相加,即得L1
上电压
di1 di2 u1 L1 M dt dt
再写第2个线圈L2上的电压u2。因L2上的电压u2与电
流i2参考方向关联,所以u2中的自感压降部分为
(6-6b)
图6.3 磁通相助的耦合电感
如果自感磁通与互感磁通的方向相反,即磁通相消, 如图6.3所示,耦合电感的电压、电流关系方程式为:
d 1 di 1 di 2 u1 L1 M dt dt dt d 2 di2 di1 u2 L2 M dt dt dt
图6.3 磁通相消的耦和电感
①若两电流均从同名端流入(或流出),则磁通相助,互感 压降与自感压降同号,即自感压降取正号时互感压降亦取正 号,自感压降取负号时互感压降亦取负号。 ②若一个电流从互感线圈的同名端流入,另一个电流从互 感线圈的同名端流出,磁通相消,互感压降与自感压降异号, 即自感压降取正号时互感压降取负号,自感压降取负号时互 感压降取正号。只要按照上述方法书写,不管互感线圈给出 的是什么样的同名端位置,也不管两线圈上的电压、电流参 考方是否关联,都能正确书写出两线圈的电压、电流之间关 系式。
6.2 耦合电感的去耦等效 6.3 空心变压器电路的分析

6.4 理想变压器
6.1 耦合电感元件

6.1.1 耦合电感的基本概念 6.1.2 耦合电感元件的电压、电流关系 6.1.3 同名端
6.1.1 耦合电感的基本概念
图6.1是两个相距很近的线圈(电感),当线圈1中 通入电流 i1时,在线圈1中就会产生自感磁通Φ 11,而 其中一部分磁通Φ 21 ,它不仅穿过线圈1,同时也穿过 线圈2,且Φ 21≤Φ 11。同样,若在线圈2中通入电流 i2, 它产生的自感磁通Φ 22,其中也有一部分磁通Φ 12不仅 穿过线圈2,同时也穿过线圈1,且Φ 12 ≤Φ 22 。像这 种一个线圈的磁通与另一个线圈相交链的现象,称为磁 耦合,即互感。Φ 21 和Φ 12 称为耦合磁通或互感磁通。
图6.7 互感线圈同名端的测定
关于耦合电感上电压电流关系这里再强调说明两点:
(1)耦合电感上电压、电流关系式形式有多种形式,不 仅与耦合电感的同名端位置有关,还与两线圈上电压、电流 参考方向设的情况有关。若互感两线圈上电压电流都设成关 联参考方向,磁通相助时可套用式(6-8),磁通相消时可套 用式(6-9)。若非此两种情况,不可乱套用上述两式。
以u2中的互感压降部分为
di1 dt
L2
di2 dt
。考
虑磁通相助情况,互感压降部分与自感压降部分同号,所
M
。将L2上自感压降部分与互
感压降部分代数和相加,即得L2上电压
di2 di1 u2 L2 M dt dt
ห้องสมุดไป่ตู้
此例是为了给读者起示范作用,所以列写的过程 较详细。以后再遇到写互感线圈上电压、电流微分关 系,线圈上电压、电流参考方向是否关联、磁通相助 或是相消的判别过程均不必写出,直接可写(对本互感
(2)如何正确书写所遇各种情况的耦合电感上的电压、
电流关系是至关重要的。通常,将耦合线圈上电压看成由自 感压降与互感压降两部分代数和组成。
先写自感压降:若线圈上电压、电流参考方向关联,则 其上自感电压取正号即。反之,取负号即-。
相关主题